1 code implementation • 11 Oct 2022 • Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, Sergey Levine
To our knowledge, PTR is the first RL method that succeeds at learning new tasks in a new domain on a real WidowX robot with as few as 10 task demonstrations, by effectively leveraging an existing dataset of diverse multi-task robot data collected in a variety of toy kitchens.
no code implementations • 4 Feb 2022 • Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, Chelsea Finn
In this paper, we study the problem of enabling a vision-based robotic manipulation system to generalize to novel tasks, a long-standing challenge in robot learning.
2 code implementations • 27 Sep 2021 • Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas Daniilidis, Chelsea Finn, Sergey Levine
Robot learning holds the promise of learning policies that generalize broadly.
1 code implementation • ICLR 2021 • Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysenbach, Chelsea Finn, Sergey Levine
In our experiments, we find that our method can successfully learn models that perform a variety of tasks at test-time, moving objects amid distractors with a simulated robotic arm and even learning to open and close a drawer using a real-world robot.
1 code implementation • NeurIPS 2020 • Karl Pertsch, Oleh Rybkin, Frederik Ebert, Chelsea Finn, Dinesh Jayaraman, Sergey Levine
In this work we propose a framework for visual prediction and planning that is able to overcome both of these limitations.
1 code implementation • 16 Mar 2020 • Akhil Padmanabha, Frederik Ebert, Stephen Tian, Roberto Calandra, Chelsea Finn, Sergey Levine
We compare with a state-of-the-art tactile sensor that is only sensitive on one side, as well as a state-of-the-art multi-directional tactile sensor, and find that OmniTact's combination of high-resolution and multi-directional sensing is crucial for reliably inserting the electrical connector and allows for higher accuracy in the state estimation task.
no code implementations • 24 Oct 2019 • Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh, Sergey Levine, Chelsea Finn
This leads to a frequent tension in robotic learning: how can we learn generalizable robotic controllers without having to collect impractically large amounts of data for each separate experiment?
no code implementations • 25 Sep 2019 • Oleh Rybkin, Karl Pertsch, Frederik Ebert, Dinesh Jayaraman, Chelsea Finn, Sergey Levine
Prior work on video generation largely focuses on prediction models that only observe frames from the beginning of the video.
no code implementations • 11 Apr 2019 • Annie Xie, Frederik Ebert, Sergey Levine, Chelsea Finn
Machine learning techniques have enabled robots to learn narrow, yet complex tasks and also perform broad, yet simple skills with a wide variety of objects.
no code implementations • 11 Mar 2019 • Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur Mudigonda, Chelsea Finn, Roberto Calandra, Sergey Levine
Touch sensing is widely acknowledged to be important for dexterous robotic manipulation, but exploiting tactile sensing for continuous, non-prehensile manipulation is challenging.
1 code implementation • 3 Dec 2018 • Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, Sergey Levine
Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains.
3 code implementations • 6 Oct 2018 • Frederik Ebert, Sudeep Dasari, Alex X. Lee, Sergey Levine, Chelsea Finn
We demonstrate that this idea can be combined with a video-prediction based controller to enable complex behaviors to be learned from scratch using only raw visual inputs, including grasping, repositioning objects, and non-prehensile manipulation.
no code implementations • ICLR 2019 • Dinesh Jayaraman, Frederik Ebert, Alexei A. Efros, Sergey Levine
Prediction is arguably one of the most basic functions of an intelligent system.
4 code implementations • ICLR 2019 • Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, Sergey Levine
However, learning to predict raw future observations, such as frames in a video, is exceedingly challenging -- the ambiguous nature of the problem can cause a naively designed model to average together possible futures into a single, blurry prediction.
Ranked #1 on
Video Prediction
on KTH
(Cond metric)
no code implementations • ICLR 2018 • Alex X. Lee, Frederik Ebert, Richard Zhang, Chelsea Finn, Pieter Abbeel, Sergey Levine
In this paper, we study the problem of multi-step video prediction, where the goal is to predict a sequence of future frames conditioned on a short context.
3 code implementations • 15 Oct 2017 • Frederik Ebert, Chelsea Finn, Alex X. Lee, Sergey Levine
One learning signal that is always available for autonomously collected data is prediction: if a robot can learn to predict the future, it can use this predictive model to take actions to produce desired outcomes, such as moving an object to a particular location.