no code implementations • 16 May 2024 • Ethan Weber, Riley Peterlinz, Rohan Mathur, Frederik Warburg, Alexei A. Efros, Angjoo Kanazawa
In this work, we recover the underlying 3D structure of non-geometrically consistent scenes.
1 code implementation • NeurIPS 2023 • Thoranna Bender, Simon Moe Sørensen, Alireza Kashani, K. Eldjarn Hjorleifsson, Grethe Hyldig, Søren Hauberg, Serge Belongie, Frederik Warburg
We demonstrate that this shared concept embedding space improves upon separate embedding spaces for coarse flavor classification (alcohol percentage, country, grape, price, rating) and aligns with the intricate human perception of flavor.
1 code implementation • 20 May 2023 • Javier Tirado-Garín, Frederik Warburg, Javier Civera
Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications.
1 code implementation • ICCV 2023 • Frederik Warburg, Ethan Weber, Matthew Tancik, Aleksander Holynski, Angjoo Kanazawa
Casually captured Neural Radiance Fields (NeRFs) suffer from artifacts such as floaters or flawed geometry when rendered outside the camera trajectory.
1 code implementation • 23 Mar 2023 • Kilian Zepf, Selma Wanna, Marco Miani, Juston Moore, Jes Frellsen, Søren Hauberg, Frederik Warburg, Aasa Feragen
Image segmentation relies heavily on neural networks which are known to be overconfident, especially when making predictions on out-of-distribution (OOD) images.
2 code implementations • CVPR 2023 • Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, Angjoo Kanazawa
We introduce k-planes, a white-box model for radiance fields in arbitrary dimensions.
Ranked #2 on Novel View Synthesis on NeRF
1 code implementation • 19 Aug 2022 • Peter Ebert Christensen, Frederik Warburg, Menglin Jia, Serge Belongie
In this work, we aim to distill such posts into a small set of narratives that capture the essential claims related to a given topic.
1 code implementation • 30 Jun 2022 • Marco Miani, Frederik Warburg, Pablo Moreno-Muñoz, Nicke Skafte Detlefsen, Søren Hauberg
In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence.
no code implementations • 9 Jun 2022 • Frederik Warburg, Michael Ramamonjisoa, Manuel López-Antequera
This remains a challenging problem due to the low density, non-uniform and outlier-prone 3D landmarks produced by SfM and SLAM pipelines.
no code implementations • 6 Jun 2022 • Sagie Benaim, Frederik Warburg, Peter Ebert Christensen, Serge Belongie
To this end, we propose a volumetric framework for (i) disentangling or separating, the volumetric representation of a given foreground object from the background, and (ii) semantically manipulating the foreground object, as well as the background.
no code implementations • 3 Feb 2022 • Andrea Vallone, Frederik Warburg, Hans Hansen, Søren Hauberg, Javier Civera
Place recognition and visual localization are particularly challenging in wide baseline configurations.
no code implementations • 7 Oct 2021 • Frederik Warburg, Daniel Hernandez-Juarez, Juan Tarrio, Alexander Vakhitov, Ujwal Bonde, Pablo F. Alcantarilla
Active stereo systems are used in many robotic applications that require 3D information.
no code implementations • ICCV 2021 • Frederik Warburg, Martin Jørgensen, Javier Civera, Søren Hauberg
Uncertainty quantification in image retrieval is crucial for downstream decisions, yet it remains a challenging and largely unexplored problem.
no code implementations • CVPR 2020 • Frederik Warburg, Soren Hauberg, Manuel Lopez-Antequera, Pau Gargallo, Yubin Kuang, Javier Civera
Lifelong place recognition is an essential and challenging task in computer vision with vast applications in robust localization and efficient large-scale 3D reconstruction.
1 code implementation • 7 Apr 2020 • Pola Schwöbel, Frederik Warburg, Martin Jørgensen, Kristoffer H. Madsen, Søren Hauberg
Spatial Transformer Networks (STNs) estimate image transformations that can improve downstream tasks by `zooming in' on relevant regions in an image.