no code implementations • ICML 2020 • QUANMING YAO, Hansi Yang, Bo Han, Gang Niu, James Kwok
Sample selection approaches are popular in robust learning from noisy labels.
no code implementations • 22 Mar 2023 • Jiaheng Wei, Zhaowei Zhu, Gang Niu, Tongliang Liu, Sijia Liu, Masashi Sugiyama, Yang Liu
Both long-tailed and noisily labeled data frequently appear in real-world applications and impose significant challenges for learning.
no code implementations • 8 Dec 2022 • Hongxin Wei, Huiping Zhuang, Renchunzi Xie, Lei Feng, Gang Niu, Bo An, Yixuan Li
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks.
1 code implementation • Conference 2022 • Yuzhou Cao, Tianchi Cai, Lei Feng, Lihong Gu, Jinjie Gu, Bo An, Gang Niu, Masashi Sugiyama
\emph{Classification with rejection} (CwR) refrains from making a prediction to avoid critical misclassification when encountering test samples that are difficult to classify.
1 code implementation • 1 Nov 2022 • Jianan Zhou, Jianing Zhu, Jingfeng Zhang, Tongliang Liu, Gang Niu, Bo Han, Masashi Sugiyama
Adversarial training (AT) with imperfect supervision is significant but receives limited attention.
no code implementations • 5 Oct 2022 • Qiong Zhang, Aline Talhouk, Gang Niu, Xiaoxiao Li
In this paper, we consider an important yet under-explored setting of FL, namely FL with mixed-type labels where different labeling criteria can be employed by various centers, leading to inter-center label space differences and challenging existing FL methods designed for the classical setting.
1 code implementation • 15 Jun 2022 • Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, James Cheng
The AutoAttack (AA) has been the most reliable method to evaluate adversarial robustness when considerable computational resources are available.
no code implementations • CVPR 2022 • De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, Masashi Sugiyama
In label-noise learning, estimating the transition matrix has attracted more and more attention as the matrix plays an important role in building statistically consistent classifiers.
1 code implementation • 7 Apr 2022 • Nan Lu, Zhao Wang, Xiaoxiao Li, Gang Niu, Qi Dou, Masashi Sugiyama
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients, a modified model is trained by supervised FL, and the wanted model is recovered from the modified model.
no code implementations • 22 Feb 2022 • Yinghua Gao, Dongxian Wu, Jingfeng Zhang, Guanhao Gan, Shu-Tao Xia, Gang Niu, Masashi Sugiyama
To explore whether adversarial training could defend against backdoor attacks or not, we conduct extensive experiments across different threat models and perturbation budgets, and find the threat model in adversarial training matters.
1 code implementation • 1 Feb 2022 • Takashi Ishida, Ikko Yamane, Nontawat Charoenphakdee, Gang Niu, Masashi Sugiyama
In contrast to others, our method is model-free and even instance-free.
1 code implementation • 22 Jan 2022 • Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, Junbo Zhao
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity.
1 code implementation • ICLR 2022 • Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, Yang Liu
These observations require us to rethink the treatment of noisy labels, and we hope the availability of these two datasets would facilitate the development and evaluation of future learning with noisy label solutions.
no code implementations • 29 Sep 2021 • Yu Yao, Xuefeng Li, Tongliang Liu, Alan Blair, Mingming Gong, Bo Han, Gang Niu, Masashi Sugiyama
Existing methods for learning with noisy labels can be generally divided into two categories: (1) sample selection and label correction based on the memorization effect of neural networks; (2) loss correction with the transition matrix.
no code implementations • ICLR 2022 • Nan Lu, Zhao Wang, Xiaoxiao Li, Gang Niu, Qi Dou, Masashi Sugiyama
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients, a modified model is trained by supervised FL, and the wanted model is recovered from the modified model.
1 code implementation • ICLR 2022 • Haobo Wang, Ruixuan Xiao, Sharon Li, Lei Feng, Gang Niu, Gang Chen, Junbo Zhao
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity.
no code implementations • 29 Sep 2021 • Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Yang Liu
It was shown that LS serves as a regularizer for training data with hard labels and therefore improves the generalization of the model.
Ranked #13 on
Learning with noisy labels
on CIFAR-10N-Worst
2 code implementations • ICLR 2022 • Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, Masashi Sugiyama
As the first contribution, we empirically show that the class activation map (CAM), a simple technique for discriminating the learning patterns of each class in images, is surprisingly better at making accurate predictions than the model itself on selecting the true label from candidate labels.
no code implementations • 29 Sep 2021 • Cheng-Yu Hsieh, Wei-I Lin, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
The goal of multi-label learning (MLL) is to associate a given instance with its relevant labels from a set of concepts.
no code implementations • 29 Sep 2021 • Yinghua Gao, Dongxian Wu, Jingfeng Zhang, Shu-Tao Xia, Gang Niu, Masashi Sugiyama
Based on thorough experiments, we find that such trade-off ignores the interactions between the perturbation budget of adversarial training and the magnitude of the backdoor trigger.
2 code implementations • NeurIPS 2021 • Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, Kun Zhang
In particular, we show that properly modeling the instances will contribute to the identifiability of the label noise transition matrix and thus lead to a better classifier.
no code implementations • 30 Jun 2021 • Ruize Gao, Feng Liu, Kaiwen Zhou, Gang Niu, Bo Han, James Cheng
However, when tested on attacks different from the given attack simulated in training, the robustness may drop significantly (e. g., even worse than no reweighting).
1 code implementation • NeurIPS 2021 • Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu
Instead of the early stopping, which trains a whole DNN all at once, we initially train former DNN layers by optimizing the DNN with a relatively large number of epochs.
Ranked #7 on
Learning with noisy labels
on CIFAR-10N-Aggregate
no code implementations • 16 Jun 2021 • Yuzhou Cao, Lei Feng, Senlin Shu, Yitian Xu, Bo An, Gang Niu, Masashi Sugiyama
We show that without any assumptions on the loss functions, models, and optimizers, we can successfully learn a multi-class classifier from only data of a single class with a rigorous consistency guarantee when confidences (i. e., the class-posterior probabilities for all the classes) are available.
1 code implementation • NeurIPS 2021 • Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama
Reweighting adversarial data during training has been recently shown to improve adversarial robustness, where data closer to the current decision boundaries are regarded as more critical and given larger weights.
no code implementations • 11 Jun 2021 • Jiaqi Lv, Biao Liu, Lei Feng, Ning Xu, Miao Xu, Bo An, Gang Niu, Xin Geng, Masashi Sugiyama
Partial-label learning (PLL) utilizes instances with PLs, where a PL includes several candidate labels but only one is the true label (TL).
1 code implementation • ICLR 2022 • Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang
The adversarial vulnerability of deep neural networks has attracted significant attention in machine learning.
1 code implementation • ICLR 2022 • Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang
However, when considering adversarial robustness, teachers may become unreliable and adversarial distillation may not work: teachers are pretrained on their own adversarial data, and it is too demanding to require that teachers are also good at every adversarial data queried by students.
1 code implementation • 8 Jun 2021 • Jiaheng Wei, Hangyu Liu, Tongliang Liu, Gang Niu, Masashi Sugiyama, Yang Liu
We provide understandings for the properties of LS and NLS when learning with noisy labels.
Ranked #7 on
Learning with noisy labels
on CIFAR-10N-Random3
no code implementations • 1 Jun 2021 • Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama
Lots of approaches, e. g., loss correction and label correction, cannot handle such open-set noisy labels well, since they need training data and test data to share the same label space, which does not hold for learning with open-set noisy labels.
no code implementations • NeurIPS 2021 • Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama
In this way, we also give large-loss but less selected data a try; then, we can better distinguish between the cases (a) and (b) by seeing if the losses effectively decrease with the uncertainty after the try.
Ranked #25 on
Image Classification
on mini WebVision 1.0
1 code implementation • 31 May 2021 • Jingfeng Zhang, Xilie Xu, Bo Han, Tongliang Liu, Gang Niu, Lizhen Cui, Masashi Sugiyama
First, we thoroughly investigate noisy labels (NLs) injection into AT's inner maximization and outer minimization, respectively and obtain the observations on when NL injection benefits AT.
no code implementations • 27 May 2021 • Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu
Motivated by that classifiers mostly output Bayes optimal labels for prediction, in this paper, we study to directly model the transition from Bayes optimal labels to noisy labels (i. e., Bayes-label transition matrix (BLTM)) and learn a classifier to predict Bayes optimal labels.
no code implementations • 15 Feb 2021 • Chen Chen, Jingfeng Zhang, Xilie Xu, Tianlei Hu, Gang Niu, Gang Chen, Masashi Sugiyama
To enhance adversarial robustness, adversarial training learns deep neural networks on the adversarial variants generated by their natural data.
no code implementations • 13 Feb 2021 • Yuzhou Cao, Lei Feng, Yitian Xu, Bo An, Gang Niu, Masashi Sugiyama
Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data.
2 code implementations • 10 Feb 2021 • Hanshu Yan, Jingfeng Zhang, Gang Niu, Jiashi Feng, Vincent Y. F. Tan, Masashi Sugiyama
By comparing \textit{non-robust} (normally trained) and \textit{robustified} (adversarially trained) models, we observe that adversarial training (AT) robustifies CNNs by aligning the channel-wise activations of adversarial data with those of their natural counterparts.
1 code implementation • ICLR 2022 • Haoang Chi, Feng Liu, Bo Han, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Mingyuan Zhou, Masashi Sugiyama
In this paper, we demystify assumptions behind NCD and find that high-level semantic features should be shared among the seen and unseen classes.
no code implementations • 6 Feb 2021 • Jianing Zhu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Hongxia Yang, Mohan Kankanhalli, Masashi Sugiyama
A recent adversarial training (AT) study showed that the number of projected gradient descent (PGD) steps to successfully attack a point (i. e., find an adversarial example in its proximity) is an effective measure of the robustness of this point.
1 code implementation • 4 Feb 2021 • Yivan Zhang, Gang Niu, Masashi Sugiyama
To estimate the transition matrix from noisy data, existing methods often need to estimate the noisy class-posterior, which could be unreliable due to the overconfidence of neural networks.
1 code implementation • 4 Feb 2021 • Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama
In label-noise learning, the transition matrix plays a key role in building statistically consistent classifiers.
Ranked #13 on
Learning with noisy labels
on CIFAR-100N
1 code implementation • 3 Feb 2021 • Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama
In adversarial training (AT), the main focus has been the objective and optimizer while the model has been less studied, so that the models being used are still those classic ones in standard training (ST).
1 code implementation • 1 Feb 2021 • Nan Lu, Shida Lei, Gang Niu, Issei Sato, Masashi Sugiyama
SSC can be solved by a standard (multi-class) classification method, and we use the SSC solution to obtain the final binary classifier through a certain linear-fractional transformation.
1 code implementation • 14 Jan 2021 • Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong
The drastic increase of data quantity often brings the severe decrease of data quality, such as incorrect label annotations, which poses a great challenge for robustly training Deep Neural Networks (DNNs).
no code implementations • 1 Jan 2021 • Chia-You Chen, Hsuan-Tien Lin, Gang Niu, Masashi Sugiyama
One is to (pre-)train a classifier with examples from known classes, and then transfer the pre-trained classifier to unknown classes using the new examples.
no code implementations • 2 Dec 2020 • Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang Niu, Guodong Long
We also instantiate our framework with different combinations, which set the new state of the art on benchmark-simulated and real-world datasets with noisy labels.
1 code implementation • 9 Nov 2020 • Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, Masashi Sugiyama
Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios.
2 code implementations • 22 Oct 2020 • Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama
However, it has been shown that the MMD test is unaware of adversarial attacks -- the MMD test failed to detect the discrepancy between natural and adversarial data.
no code implementations • 5 Oct 2020 • Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu, Bo An, Masashi Sugiyama
To alleviate the data requirement for training effective binary classifiers in binary classification, many weakly supervised learning settings have been proposed.
1 code implementation • ICLR 2021 • Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, Mohan Kankanhalli
The belief was challenged by recent studies where we can maintain the robustness and improve the accuracy.
no code implementations • 28 Sep 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
It is worthwhile to perform the transformation: We prove that the noise rate for the noisy similarity labels is lower than that of the noisy class labels, because similarity labels themselves are robust to noise.
no code implementations • NeurIPS 2020 • Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, Masashi Sugiyama
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels.
no code implementations • ICML 2020 • Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
In weakly supervised learning, unbiased risk estimator(URE) is a powerful tool for training classifiers when training and test data are drawn from different distributions.
1 code implementation • NeurIPS 2020 • Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu, DaCheng Tao, Masashi Sugiyama
Learning with the \textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise.
no code implementations • 14 Jun 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
To give an affirmative answer, in this paper, we propose a framework called Class2Simi: it transforms data points with noisy class labels to data pairs with noisy similarity labels, where a similarity label denotes whether a pair shares the class label or not.
1 code implementation • NeurIPS 2020 • Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, Masashi Sugiyama
By this intermediate class, the original transition matrix can then be factorized into the product of two easy-to-estimate transition matrices.
1 code implementation • NeurIPS 2020 • Tongtong Fang, Nan Lu, Gang Niu, Masashi Sugiyama
Under distribution shift (DS) where the training data distribution differs from the test one, a powerful technique is importance weighting (IW) which handles DS in two separate steps: weight estimation (WE) estimates the test-over-training density ratio and weighted classification (WC) trains the classifier from weighted training data.
1 code implementation • ICML 2020 • Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, Mohan Kankanhalli
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models.
1 code implementation • ICML 2020 • Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, Masashi Sugiyama
We experimentally show that flooding improves performance and, as a byproduct, induces a double descent curve of the test loss.
1 code implementation • ICML 2020 • Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, Masashi Sugiyama
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
no code implementations • 16 Feb 2020 • Songhua Wu, Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu
We further estimate the transition matrix from only noisy data and build a novel learning system to learn a classifier which can assign noise-free class labels for instances.
no code implementations • ICLR 2022 • Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, DaCheng Tao
Hitherto, the distributional-assumption-free CPE methods rely on a critical assumption that the support of the positive data distribution cannot be contained in the support of the negative data distribution.
no code implementations • 11 Jan 2020 • Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama
We find with the help of confidence scores, the transition distribution of each instance can be approximately estimated.
no code implementations • ICML 2020 • Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, Masashi Sugiyama
In this paper, we propose a novel problem setting to allow MCLs for each example and two ways for learning with MCLs.
no code implementations • 20 Nov 2019 • Jingfeng Zhang, Bo Han, Gang Niu, Tongliang Liu, Masashi Sugiyama
Deep neural networks (DNNs) are incredibly brittle due to adversarial examples.
3 code implementations • 6 Nov 2019 • Quanming Yao, Hansi Yang, Bo Han, Gang Niu, James Kwok
Sample selection approaches are popular in robust learning from noisy labels.
1 code implementation • EACL 2021 • Alon Jacovi, Gang Niu, Yoav Goldberg, Masashi Sugiyama
We consider the situation in which a user has collected a small set of documents on a cohesive topic, and they want to retrieve additional documents on this topic from a large collection.
no code implementations • 20 Oct 2019 • Nan Lu, Tianyi Zhang, Gang Niu, Masashi Sugiyama
The recently proposed unlabeled-unlabeled (UU) classification method allows us to train a binary classifier only from two unlabeled datasets with different class priors.
no code implementations • 25 Sep 2019 • Feng Liu, Jie Lu, Bo Han, Gang Niu, Guangquan Zhang, Masashi Sugiyama
Hence, we consider a new, more realistic and more challenging problem setting, where classifiers have to be trained with noisy labeled data from SD and unlabeled data from TD---we name it wildly UDA (WUDA).
Unsupervised Domain Adaptation
Wildly Unsupervised Domain Adaptation
no code implementations • 22 Jul 2019 • Wenkai Xu, Gang Niu, Aapo Hyvärinen, Masashi Sugiyama
On the other hand, compressing the vertices while preserving the directed edge information provides a way to learn the small-scale representation of a directed graph.
1 code implementation • NeurIPS 2019 • Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, Masashi Sugiyama
Existing theories have shown that the transition matrix can be learned by exploiting \textit{anchor points} (i. e., data points that belong to a specific class almost surely).
Ranked #16 on
Learning with noisy labels
on CIFAR-10N-Random3
1 code implementation • NeurIPS 2019 • Liyuan Xu, Junya Honda, Gang Niu, Masashi Sugiyama
We propose two practical methods for uncoupled regression from pairwise comparison data and show that the learned regression model converges to the optimal model with the optimal parametric convergence rate when the target variable distributes uniformly.
no code implementations • 29 May 2019 • Yuangang Pan, WeiJie Chen, Gang Niu, Ivor W. Tsang, Masashi Sugiyama
In rank aggregation, preferences from different users are summarized into a total order under the homogeneous data assumption.
1 code implementation • 19 May 2019 • Feng Liu, Jie Lu, Bo Han, Gang Niu, Guangquan Zhang, Masashi Sugiyama
Hence, we consider a new, more realistic and more challenging problem setting, where classifiers have to be trained with noisy labeled data from SD and unlabeled data from TD -- we name it wildly UDA (WUDA).
Unsupervised Domain Adaptation
Wildly Unsupervised Domain Adaptation
no code implementations • ICLR Workshop LLD 2019 • Cheng-Yu Hsieh, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
To address the need, we propose a special weakly supervised MLL problem that not only focuses on the situation of limited fine-grained supervision but also leverages the hierarchical relationship between the coarse concepts and the fine-grained ones.
no code implementations • 29 Jan 2019 • Miao Xu, Bingcong Li, Gang Niu, Bo Han, Masashi Sugiyama
May there be a new sample selection method that can outperform the latest importance reweighting method in the deep learning age?
3 code implementations • 14 Jan 2019 • Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, Masashi Sugiyama
Learning with noisy labels is one of the hottest problems in weakly-supervised learning.
Ranked #12 on
Learning with noisy labels
on CIFAR-10N-Worst
1 code implementation • Proceedings of the 36th International Conference on Machine Learning, 2019 • Takashi Ishida, Gang Niu, Aditya Krishna Menon, Masashi Sugiyama
In contrast to the standard classification paradigm where the true class is given to each training pattern, complementary-label learning only uses training patterns each equipped with a complementary label, which only specifies one of the classes that the pattern does not belong to.
Ranked #21 on
Image Classification
on Kuzushiji-MNIST
1 code implementation • ICLR 2019 • Yu-Guan Hsieh, Gang Niu, Masashi Sugiyama
In binary classification, there are situations where negative (N) data are too diverse to be fully labeled and we often resort to positive-unlabeled (PU) learning in these scenarios.
1 code implementation • ICML 2020 • Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor Tsang, Masashi Sugiyama
Given data with noisy labels, over-parameterized deep networks can gradually memorize the data, and fit everything in the end.
no code implementations • 27 Sep 2018 • Bo Han, Gang Niu, Jiangchao Yao, Xingrui Yu, Miao Xu, Ivor Tsang, Masashi Sugiyama
To handle these issues, by using the memorization effects of deep neural networks, we may train deep neural networks on the whole dataset only the first few iterations.
no code implementations • 15 Sep 2018 • Masahiro Kato, Liyuan Xu, Gang Niu, Masashi Sugiyama
In this paper, we propose a novel unified approach to estimating the class-prior and training a classifier alternately.
1 code implementation • ICLR 2019 • Nan Lu, Gang Niu, Aditya Krishna Menon, Masashi Sugiyama
In this paper, we study training arbitrary (from linear to deep) binary classifier from only unlabeled (U) data by ERM.
no code implementations • 23 May 2018 • Miao Xu, Gang Niu, Bo Han, Ivor W. Tsang, Zhi-Hua Zhou, Masashi Sugiyama
We consider a challenging multi-label classification problem where both feature matrix $\X$ and label matrix $\Y$ have missing entries.
no code implementations • 22 May 2018 • Chao Li, Mohammad Emtiyaz Khan, Zhun Sun, Gang Niu, Bo Han, Shengli Xie, Qibin Zhao
Exact recovery of tensor decomposition (TD) methods is a desirable property in both unsupervised learning and scientific data analysis.
2 code implementations • NeurIPS 2018 • Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya zhang, Masashi Sugiyama
It is important to learn various types of classifiers given training data with noisy labels.
Ranked #38 on
Image Classification
on Clothing1M
(using extra training data)
4 code implementations • NeurIPS 2018 • Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, Masashi Sugiyama
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training.
Ranked #6 on
Learning with noisy labels
on CIFAR-10N-Random3
no code implementations • 15 Feb 2018 • Sheng-Jun Huang, Miao Xu, Ming-Kun Xie, Masashi Sugiyama, Gang Niu, Songcan Chen
Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance.
2 code implementations • ICML 2018 • Han Bao, Gang Niu, Masashi Sugiyama
Supervised learning needs a huge amount of labeled data, which can be a big bottleneck under the situation where there is a privacy concern or labeling cost is high.
1 code implementation • NeurIPS 2018 • Takashi Ishida, Gang Niu, Masashi Sugiyama
Can we learn a binary classifier from only positive data, without any negative data or unlabeled data?
no code implementations • 15 Oct 2017 • Tomoya Sakai, Gang Niu, Masashi Sugiyama
Recent advances in weakly supervised classification allow us to train a classifier only from positive and unlabeled (PU) data.
no code implementations • 6 Jul 2017 • Hiroaki Sasaki, Takafumi Kanamori, Aapo Hyvärinen, Gang Niu, Masashi Sugiyama
Based on the proposed estimator, novel methods both for mode-seeking clustering and density ridge estimation are developed, and the respective convergence rates to the mode and ridge of the underlying density are also established.
1 code implementation • NeurIPS 2017 • Takashi Ishida, Gang Niu, Weihua Hu, Masashi Sugiyama
Collecting complementary labels would be less laborious than collecting ordinary labels, since users do not have to carefully choose the correct class from a long list of candidate classes.
no code implementations • 4 May 2017 • Tomoya Sakai, Gang Niu, Masashi Sugiyama
Maximizing the area under the receiver operating characteristic curve (AUC) is a standard approach to imbalanced classification.
1 code implementation • NeurIPS 2017 • Ryuichi Kiryo, Gang Niu, Marthinus C. Du Plessis, Masashi Sugiyama
From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning.
no code implementations • ICML 2018 • Weihua Hu, Gang Niu, Issei Sato, Masashi Sugiyama
Since the DRSL is explicitly formulated for a distribution shift scenario, we naturally expect it to give a robust classifier that can aggressively handle shifted distributions.
no code implementations • 5 Nov 2016 • Marthinus C. du Plessis, Gang Niu, Masashi Sugiyama
Under the assumption that an additional labeled dataset is available, the class prior can be estimated by fitting a mixture of class-wise data distributions to the unlabeled data distribution.
no code implementations • ICML 2017 • Tomoya Sakai, Marthinus Christoffel du Plessis, Gang Niu, Masashi Sugiyama
Most of the semi-supervised classification methods developed so far use unlabeled data for regularization purposes under particular distributional assumptions such as the cluster assumption.
no code implementations • NeurIPS 2016 • Gang Niu, Marthinus Christoffel du Plessis, Tomoya Sakai, Yao Ma, Masashi Sugiyama
In PU learning, a binary classifier is trained from positive (P) and unlabeled (U) data without negative (N) data.
1 code implementation • 3 Mar 2016 • Hiroaki Shiino, Hiroaki Sasaki, Gang Niu, Masashi Sugiyama
Non-Gaussian component analysis (NGCA) is an unsupervised linear dimension reduction method that extracts low-dimensional non-Gaussian "signals" from high-dimensional data contaminated with Gaussian noise.
no code implementations • 28 Jan 2016 • Hiroaki Sasaki, Gang Niu, Masashi Sugiyama
Non-Gaussian component analysis (NGCA) is aimed at identifying a linear subspace such that the projected data follows a non-Gaussian distribution.
no code implementations • NeurIPS 2014 • Marthinus C. Du Plessis, Gang Niu, Masashi Sugiyama
We next analyze the excess risk when the class prior is estimated from data, and show that the classification accuracy is not sensitive to class prior estimation if the unlabeled data is dominated by the positive data (this is naturally satisfied in inlier-based outlier detection because inliers are dominant in the unlabeled dataset).
no code implementations • 3 Feb 2014 • Gang Niu, Bo Dai, Marthinus Christoffel du Plessis, Masashi Sugiyama
Given a hypothesis space, the large volume principle by Vladimir Vapnik prioritizes equivalence classes according to their volume in the hypothesis space.
no code implementations • 30 Apr 2013 • Daniele Calandriello, Gang Niu, Masashi Sugiyama
Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm.
no code implementations • NeurIPS 2011 • Tingting Zhao, Hirotaka Hachiya, Gang Niu, Masashi Sugiyama
We also theoretically show that PGPE with the optimal baseline is more preferable than REINFORCE with the optimal baseline in terms of the variance of gradient estimates.