no code implementations • COLING 2022 • Garrett Nicolai, Changbing Yang, Miikka Silfverberg
Experiments on very low-resourced Indigenous North American languages show that an initially deficient multilingual translator can improve by 4. 9 BLEU through mBART pre-training, and 5. 5 BLEU points with the strategic addition of monolingual data, and that a divergence penalty leads to further increases of 0. 4 BLEU.
no code implementations • Findings (ACL) 2022 • Adam Wiemerslage, Miikka Silfverberg, Changbing Yang, Arya McCarthy, Garrett Nicolai, Eliana Colunga, Katharina Kann
Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages.
1 code implementation • LREC 2022 • Bruce Oliver, Clarissa Forbes, Changbing Yang, Farhan Samir, Edith Coates, Garrett Nicolai, Miikka Silfverberg
We use Gitksan data in interlinear glossed format, stemming from language documentation efforts, to build a database of partial inflection tables.
no code implementations • NAACL (SIGMORPHON) 2022 • Changbing Yang, Ruixin (Ray) Yang, Garrett Nicolai, Miikka Silfverberg
This paper presents experiments on morphological inflection using data from the SIGMORPHON-UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection.
no code implementations • Findings (ACL) 2022 • Clarissa Forbes, Farhan Samir, Bruce Oliver, Changbing Yang, Edith Coates, Garrett Nicolai, Miikka Silfverberg
With this paper, we make the case that IGT data can be leveraged successfully provided that target language expertise is available.
no code implementations • ACL (SIGMORPHON) 2021 • Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, Shijie Wu, Eleanor Chodroff, Brian Leonard, Garrett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, Nizar Habash, Charbel El-Khaissi, Omer Goldman, Michael Gasser, William Lane, Matt Coler, Arturo Oncevay, Jaime Rafael Montoya Samame, Gema Celeste Silva Villegas, Adam Ek, Jean-Philippe Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool, Karina Sheifer, Sofya Ganieva, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Andrew Krizhanovsky, Natalia Krizhanovsky, Clara Vania, Sardana Ivanova, Aelita Salchak, Christopher Straughn, Zoey Liu, Jonathan North Washington, Duygu Ataman, Witold Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Richard J. Hatcher, Emily Prud'hommeaux, Ritesh Kumar, Mans Hulden, Botond Barta, Dorina Lakatos, Gábor Szolnok, Judit Ács, Mohit Raj, David Yarowsky, Ryan Cotterell, Ben Ambridge, Ekaterina Vylomova
This year's iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features.
no code implementations • ACL (SIGMORPHON) 2021 • Clarissa Forbes, Garrett Nicolai, Miikka Silfverberg
This paper presents a finite-state morphological analyzer for the Gitksan language.
no code implementations • ACL (SIGMORPHON) 2021 • Roger Yu-Hsiang Lo, Garrett Nicolai
This paper documents the UBC Linguistics team’s approach to the SIGMORPHON 2021 Grapheme-to-Phoneme Shared Task, concentrating on the low-resource setting.
no code implementations • ACL (SIGMORPHON) 2021 • Changbing Yang, Garrett Nicolai, Miikka Silfverberg
Secondly, we experiment with more general rules which can apply transformations inside the input strings in addition to prefix and suffix transformations.
no code implementations • ACL (SIGMORPHON) 2021 • Adam Wiemerslage, Arya D. McCarthy, Alexander Erdmann, Garrett Nicolai, Manex Agirrezabal, Miikka Silfverberg, Mans Hulden, Katharina Kann
We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms.
1 code implementation • 16 Jun 2024 • Changbing Yang, Garrett Nicolai, Miikka Silfverberg
In this paper, we address the data scarcity problem in automatic data-driven glossing for low-resource languages by coordinating multiple sources of linguistic expertise.
no code implementations • 13 Mar 2024 • Changbing Yang, Garrett Nicolai, Miikka Silfverberg
Aided by these enhancements, our model demonstrates an average improvement of 3. 97\%-points over the previous state of the art on datasets from the SIGMORPHON 2023 Shared Task on Interlinear Glossing.
no code implementations • 11 Jul 2023 • Wayne Yang, Garrett Nicolai
Neural models have revolutionized the field of machine translation, but creating parallel corpora is expensive and time-consuming.
1 code implementation • 26 May 2023 • Adam Wiemerslage, Changbing Yang, Garrett Nicolai, Miikka Silfverberg, Katharina Kann
We aim at closing this gap by investigating the types of noise encountered within a pipeline for truly unsupervised morphological paradigm completion and its impact on morphological inflection systems: First, we propose an error taxonomy and annotation pipeline for inflection training data.
no code implementations • LREC 2022 • Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Benoît Sagot, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova
The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema.
no code implementations • 17 Mar 2022 • Clarissa Forbes, Farhan Samir, Bruce Harold Oliver, Changbing Yang, Edith Coates, Garrett Nicolai, Miikka Silfverberg
With this paper, we make the case that IGT data can be leveraged successfully provided that target language expertise is available.
no code implementations • 16 Mar 2022 • Adam Wiemerslage, Miikka Silfverberg, Changbing Yang, Arya D. McCarthy, Garrett Nicolai, Eliana Colunga, Katharina Kann
Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages.
no code implementations • NAACL 2021 • Miikka Silfverberg, Francis Tyers, Garrett Nicolai, Mans Hulden
Sequence-to-sequence models have delivered impressive results in word formation tasks such as morphological inflection, often learning to model subtle morphophonological details with limited training data.
no code implementations • 1 Apr 2021 • Miikka Silfverberg, Francis Tyers, Garrett Nicolai, Mans Hulden
Sequence-to-sequence models have delivered impressive results in word formation tasks such as morphological inflection, often learning to model subtle morphophonological details with limited training data.
no code implementations • COLING 2020 • Garrett Nicolai, Miikka Silfverberg
Morphological inflection, like many sequence-to-sequence tasks, sees great performance from recurrent neural architectures when data is plentiful, but performance falls off sharply in lower-data settings.
1 code implementation • WS 2020 • Ekaterina Vylomova, Jennifer White, Elizabeth Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef Valvoda, Svetlana Toldova, Francis Tyers, Elena Klyachko, Ilya Yegorov, Natalia Krizhanovsky, Paula Czarnowska, Irene Nikkarinen, Andrew Krizhanovsky, Tiago Pimentel, Lucas Torroba Hennigen, Christo Kirov, Garrett Nicolai, Adina Williams, Antonios Anastasopoulos, Hilaria Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka Silfverberg, Mans Hulden
Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages.
no code implementations • WS 2020 • Katharina Kann, Arya McCarthy, Garrett Nicolai, Mans Hulden
In this paper, we describe the findings of the SIGMORPHON 2020 shared task on unsupervised morphological paradigm completion (SIGMORPHON 2020 Task 2), a novel task in the field of inflectional morphology.
no code implementations • LREC 2020 • Arya D. McCarthy, Rachel Wicks, Dylan Lewis, Aaron Mueller, Winston Wu, Oliver Adams, Garrett Nicolai, Matt Post, David Yarowsky
The corpus consists of over 4000 unique translations of the Christian Bible and counting.
2 code implementations • ACL 2020 • Aaron Mueller, Garrett Nicolai, Panayiota Petrou-Zeniou, Natalia Talmina, Tal Linzen
On other constructions, agreement accuracy was generally higher in languages with richer morphology.
no code implementations • LREC 2020 • Winston Wu, Garrett Nicolai
We describe the JHUBC submission to the EvaLatin Shared task on lemmatization and part-of-speech tagging for Latin.
no code implementations • LREC 2020 • Garrett Nicolai, Dylan Lewis, Arya D. McCarthy, Aaron Mueller, Winston Wu, David Yarowsky
Exploiting the broad translation of the Bible into the world{'}s languages, we train and distribute morphosyntactic tools for approximately one thousand languages, vastly outstripping previous distributions of tools devoted to the processing of inflectional morphology.
no code implementations • LREC 2020 • Winston Wu, Garrett Nicolai, David Yarowsky
We propose a new functional definition and construction method for core vocabulary sets for multiple applications based on the relative coverage of a target concept in thousands of bilingual dictionaries.
no code implementations • LREC 2020 • Aaron Mueller, Garrett Nicolai, Arya D. McCarthy, Dylan Lewis, Winston Wu, David Yarowsky
We find that best practices in this domain are highly language-specific: adding more languages to a training set is often better, but too many harms performance{---}the best number depends on the source language.
Low Resource Neural Machine Translation Low-Resource Neural Machine Translation +1
no code implementations • LREC 2020 • Arya D. McCarthy, Christo Kirov, Matteo Grella, Amrit Nidhi, Patrick Xia, Kyle Gorman, Ekaterina Vylomova, Sabrina J. Mielke, Garrett Nicolai, Miikka Silfverberg, Timofey Arkhangelskiy, Nataly Krizhanovsky, Andrew Krizhanovsky, Elena Klyachko, Alexey Sorokin, John Mansfield, Valts Ern{\v{s}}treits, Yuval Pinter, Cass Jacobs, ra L., Ryan Cotterell, Mans Hulden, David Yarowsky
The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema.
1 code implementation • WS 2020 • Oliver Adams, Matthew Wiesner, Jan Trmal, Garrett Nicolai, David Yarowsky
We investigate the problem of searching for a lexeme-set in speech by searching for its inflectional variants.
no code implementations • WS 2019 • Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu, Chaitanya Malaviya, Lawrence Wolf-Sonkin, Garrett Nicolai, Christo Kirov, Miikka Silfverberg, Sabrina J. Mielke, Jeffrey Heinz, Ryan Cotterell, Mans Hulden
The SIGMORPHON 2019 shared task on cross-lingual transfer and contextual analysis in morphology examined transfer learning of inflection between 100 language pairs, as well as contextual lemmatization and morphosyntactic description in 66 languages.
no code implementations • ACL 2019 • Garrett Nicolai, David Yarowsky
A large percentage of computational tools are concentrated in a very small subset of the planet{'}s languages.
no code implementations • CONLL 2018 • Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Arya D. McCarthy, Katharina Kann, Sabrina J. Mielke, Garrett Nicolai, Miikka Silfverberg, David Yarowsky, Jason Eisner, Mans Hulden
Apart from extending the number of languages involved in earlier supervised tasks of generating inflected forms, this year the shared task also featured a new second task which asked participants to inflect words in sentential context, similar to a cloze task.
no code implementations • WS 2018 • Garrett Nicolai, Saeed Najafi, Grzegorz Kondrak
Many character-level tasks can be framed as sequence-to-sequence transduction, where the target is a word from a natural language.
no code implementations • EACL 2017 • Garrett Nicolai, Grzegorz Kondrak
The task of morphological analysis is to produce a complete list of lemma+tag analyses for a given word-form.
no code implementations • EACL 2017 • Bradley Hauer, Garrett Nicolai, Grzegorz Kondrak
The task of unsupervised lexicon induction is to find translation pairs across monolingual corpora.