Search Results for author: Gary S. W. Goh

Found 1 papers, 1 papers with code

Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution

1 code implementation arXiv 2020 Gary S. W. Goh, Sebastian Lapuschkin, Leander Weber, Wojciech Samek, Alexander Binder

From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.

Image Classification Object Recognition

Cannot find the paper you are looking for? You can Submit a new open access paper.