no code implementations • 26 May 2023 • Erik C. Johnson, Brian S. Robinson, Gautam K. Vallabha, Justin Joyce, Jordan K. Matelsky, Raphael Norman-Tenazas, Isaac Western, Marisel Villafañe-Delgado, Martha Cervantes, Michael S. Robinette, Arun V. Reddy, Lindsey Kitchell, Patricia K. Rivlin, Elizabeth P. Reilly, Nathan Drenkow, Matthew J. Roos, I-Jeng Wang, Brock A. Wester, William R. Gray-Roncal, Joan A. Hoffmann
We envision a pipeline to utilize large neuroimaging datasets, including maps of the brain which capture neuron and synapse connectivity, to improve machine learning approaches.
no code implementations • 18 Jan 2023 • Megan M. Baker, Alexander New, Mario Aguilar-Simon, Ziad Al-Halah, Sébastien M. R. Arnold, Ese Ben-Iwhiwhu, Andrew P. Brna, Ethan Brooks, Ryan C. Brown, Zachary Daniels, Anurag Daram, Fabien Delattre, Ryan Dellana, Eric Eaton, Haotian Fu, Kristen Grauman, Jesse Hostetler, Shariq Iqbal, Cassandra Kent, Nicholas Ketz, Soheil Kolouri, George Konidaris, Dhireesha Kudithipudi, Erik Learned-Miller, Seungwon Lee, Michael L. Littman, Sandeep Madireddy, Jorge A. Mendez, Eric Q. Nguyen, Christine D. Piatko, Praveen K. Pilly, Aswin Raghavan, Abrar Rahman, Santhosh Kumar Ramakrishnan, Neale Ratzlaff, Andrea Soltoggio, Peter Stone, Indranil Sur, Zhipeng Tang, Saket Tiwari, Kyle Vedder, Felix Wang, Zifan Xu, Angel Yanguas-Gil, Harel Yedidsion, Shangqun Yu, Gautam K. Vallabha
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed.
1 code implementation • 14 Mar 2022 • Erik C. Johnson, Eric Q. Nguyen, Blake Schreurs, Chigozie S. Ewulum, Chace Ashcraft, Neil M. Fendley, Megan M. Baker, Alexander New, Gautam K. Vallabha
Despite groundbreaking progress in reinforcement learning for robotics, gameplay, and other complex domains, major challenges remain in applying reinforcement learning to the evolving, open-world problems often found in critical application spaces.