no code implementations • 22 Aug 2024 • Douwe J. Spaanderman, Matthew Marzetti, Xinyi Wan, Andrew F. Scarsbrook, Philip Robinson, Edwin H. G. Oei, Jacob J. Visser, Robert Hemke, Kirsten van Langevelde, David F. Hanff, Geert J. L. H. van Leenders, Cornelis Verhoef, Dirk J. Gruühagen, Wiro J. Niessen, Stefan Klein, Martijn P. A. Starmans
This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods.
1 code implementation • 24 May 2024 • Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J. L. H. van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A. M. Janssen, Tahlita C. M. Zuiverloon, Kjersti Engan
We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction.
no code implementations • 12 Feb 2024 • Douwe J. Spaanderman, Martijn P. A. Starmans, Gonnie C. M. van Erp, David F. Hanff, Judith H. Sluijter, Anne-Rose W. Schut, Geert J. L. H. van Leenders, Cornelis Verhoef, Dirk J. Grunhagen, Wiro J. Niessen, Jacob J. Visser, Stefan Klein
Next, the method was externally validated on a dataset including five unseen STT phenotypes in extremities, achieving 0. 81$\pm$0. 08 for CT, 0. 84$\pm$0. 09 for T1-weighted MRI, and 0. 88\pm0. 08 for previously unseen T2-weighted fat-saturated (FS) MRI.
2 code implementations • 19 Aug 2021 • Martijn P. A. Starmans, Sebastian R. van der Voort, Thomas Phil, Milea J. M. Timbergen, Melissa Vos, Guillaume A. Padmos, Wouter Kessels, David Hanff, Dirk J. Grunhagen, Cornelis Verhoef, Stefan Sleijfer, Martin J. van den Bent, Marion Smits, Roy S. Dwarkasing, Christopher J. Els, Federico Fiduzi, Geert J. L. H. van Leenders, Anela Blazevic, Johannes Hofland, Tessa Brabander, Renza A. H. van Gils, Gaston J. H. Franssen, Richard A. Feelders, Wouter W. de Herder, Florian E. Buisman, Francois E. J. A. Willemssen, Bas Groot Koerkamp, Lindsay Angus, Astrid A. M. van der Veldt, Ana Rajicic, Arlette E. Odink, Mitchell Deen, Jose M. Castillo T., Jifke Veenland, Ivo Schoots, Michel Renckens, Michail Doukas, Rob A. de Man, Jan N. M. IJzermans, Razvan L. Miclea, Peter B. Vermeulen, Esther E. Bron, Maarten G. Thomeer, Jacob J. Visser, Wiro J. Niessen, Stefan Klein
In this study we propose a framework for automatically optimizing the construction of radiomics workflows per application.
1 code implementation • 14 Oct 2020 • Martijn P. A. Starmans, Milea J. M. Timbergen, Melissa Vos, Michel Renckens, Dirk J. Grünhagen, Geert J. L. H. van Leenders, Roy S. Dwarkasing, François E. J. A. Willemssen, Wiro J. Niessen, Cornelis Verhoef, Stefan Sleijfer, Jacob J. Visser, Stefan Klein
The aim of this study was to evaluate radiomics for distinguishing GISTs from other intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status and mitotic index (MI).
no code implementations • 23 Mar 2020 • Pierre Ambrosini, Eva Hollemans, Charlotte F. Kweldam, Geert J. L. H. van Leenders, Sjoerd Stallinga, Frans Vos
In conclusion, the proposed deep learning method has high sensitivity for detecting cribriform growth patterns at the expense of a limited number of false positives.