no code implementations • 18 Jul 2023 • Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, Vladimir Mikulik
\emph{Circuit analysis} is a promising technique for understanding the internal mechanisms of language models.
no code implementations • 2 Feb 2023 • Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent SIfre, John Jumper
We present speculative sampling, an algorithm for accelerating transformer decoding by enabling the generation of multiple tokens from each transformer call.
no code implementations • 25 Nov 2022 • Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, Irina Higgins
Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks.
Ranked #10 on
Arithmetic Reasoning
on GSM8K
(using extra training data)
1 code implementation • 3 Nov 2022 • Ian Osband, Seyed Mohammad Asghari, Benjamin Van Roy, Nat McAleese, John Aslanides, Geoffrey Irving
Language models often pre-train on large unsupervised text corpora, then fine-tune on additional task-specific data.
no code implementations • 28 Sep 2022 • Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, Geoffrey Irving
We present Sparrow, an information-seeking dialogue agent trained to be more helpful, correct, and harmless compared to prompted language model baselines.
no code implementations • 16 Jun 2022 • Maribeth Rauh, John Mellor, Jonathan Uesato, Po-Sen Huang, Johannes Welbl, Laura Weidinger, Sumanth Dathathri, Amelia Glaese, Geoffrey Irving, Iason Gabriel, William Isaac, Lisa Anne Hendricks
Large language models produce human-like text that drive a growing number of applications.
no code implementations • 21 Mar 2022 • Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chadwick, Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, Nat McAleese
We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets.
no code implementations • 14 Mar 2022 • Adam Gleave, Geoffrey Irving
However, to solve a particular problem (such as text summarization) it is typically necessary to fine-tune them on a task-specific dataset.
no code implementations • 7 Feb 2022 • Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese, Nat McAleese, Geoffrey Irving
In this work, we automatically find cases where a target LM behaves in a harmful way, by generating test cases ("red teaming") using another LM.
no code implementations • NA 2021 • Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent SIfre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world.
Ranked #1 on
College Mathematics
on BIG-bench
(using extra training data)
2 code implementations • 8 Dec 2021 • Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, Laurent SIfre
We enhance auto-regressive language models by conditioning on document chunks retrieved from a large corpus, based on local similarity with preceding tokens.
Ranked #1 on
Language Modelling
on WikiText-103
(using extra training data)
no code implementations • 8 Dec 2021 • Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, Iason Gabriel
We discuss the points of origin of different risks and point to potential mitigation approaches.
no code implementations • 26 Mar 2021 • Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, Geoffrey Irving
For artificial intelligence to be beneficial to humans the behaviour of AI agents needs to be aligned with what humans want.
6 code implementations • 18 Sep 2019 • Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving
Most work on reward learning has used simulated environments, but complex information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks.
2 code implementations • NeurIPS 2018 • Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, Dario Amodei
To solve complex real-world problems with reinforcement learning, we cannot rely on manually specified reward functions.
1 code implementation • 2 May 2018 • Geoffrey Irving, Paul Christiano, Dario Amodei
To make AI systems broadly useful for challenging real-world tasks, we need them to learn complex human goals and preferences.
no code implementations • 24 Jan 2017 • Sarah Loos, Geoffrey Irving, Christian Szegedy, Cezary Kaliszyk
Here we suggest deep learning based guidance in the proof search of the theorem prover E. We train and compare several deep neural network models on the traces of existing ATP proofs of Mizar statements and use them to select processed clauses during proof search.
2 code implementations • NeurIPS 2016 • Alex A. Alemi, Francois Chollet, Niklas Een, Geoffrey Irving, Christian Szegedy, Josef Urban
We study the effectiveness of neural sequence models for premise selection in automated theorem proving, one of the main bottlenecks in the formalization of mathematics.
2 code implementations • 27 May 2016 • Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments.
4 code implementations • 14 Mar 2016 • Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng
TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms.