Search Results for author: Georgios Kaissis

Found 18 papers, 10 papers with code

A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index

no code implementations22 Sep 2021 Georgios Kaissis, Moritz Knolle, Friederike Jungmann, Alexander Ziller, Dmitrii Usynin, Daniel Rueckert

$\psi$ uniquely characterises the GM and its properties by encapsulating its two fundamental quantities: the sensitivity of the query and the magnitude of the noise perturbation.

An automatic differentiation system for the age of differential privacy

no code implementations22 Sep 2021 Dmitrii Usynin, Alexander Ziller, Moritz Knolle, Daniel Rueckert, Georgios Kaissis

We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML).

Partial sensitivity analysis in differential privacy

no code implementations22 Sep 2021 Tamara T. Mueller, Alexander Ziller, Dmitrii Usynin, Moritz Knolle, Friederike Jungmann, Daniel Rueckert, Georgios Kaissis

However, while techniques such as individual R\'enyi DP (RDP) allow for granular, per-person privacy accounting, few works have investigated the impact of each input feature on the individual's privacy loss.

Image Classification

Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI

1 code implementation13 Sep 2021 Felix Meissen, Georgios Kaissis, Daniel Rueckert

In this work, we tackle the problem of Semi-Supervised Anomaly Segmentation (SAS) in Magnetic Resonance Images (MRI) of the brain, which is the task of automatically identifying pathologies in brain images.

Anomaly Detection

Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)

1 code implementation30 Aug 2021 Johannes C. Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay Prabhakar, Mihail I. Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertürk, Stephan Günnemann, Bjoern H. Menze

Moreover, we benchmark numerous state-of-the-art graph learning algorithms on the biologically relevant tasks of vessel prediction and vessel classification using the introduced vessel graph dataset.

Graph Learning

NeuralDP Differentially private neural networks by design

no code implementations30 Jul 2021 Moritz Knolle, Dmitrii Usynin, Alexander Ziller, Marcus R. Makowski, Daniel Rueckert, Georgios Kaissis

The application of differential privacy to the training of deep neural networks holds the promise of allowing large-scale (decentralized) use of sensitive data while providing rigorous privacy guarantees to the individual.

Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation

no code implementations9 Jul 2021 Alexander Ziller, Dmitrii Usynin, Moritz Knolle, Kritika Prakash, Andrew Trask, Rickmer Braren, Marcus Makowski, Daniel Rueckert, Georgios Kaissis

Reconciling large-scale ML with the closed-form reasoning required for the principled analysis of individual privacy loss requires the introduction of new tools for automatic sensitivity analysis and for tracking an individual's data and their features through the flow of computation.

Differentially private federated deep learning for multi-site medical image segmentation

1 code implementation6 Jul 2021 Alexander Ziller, Dmitrii Usynin, Nicolas Remerscheid, Moritz Knolle, Marcus Makowski, Rickmer Braren, Daniel Rueckert, Georgios Kaissis

The application of PTs to FL in medical imaging and the trade-offs between privacy guarantees and model utility, the ramifications on training performance and the susceptibility of the final models to attacks have not yet been conclusively investigated.

Federated Learning Medical Image Segmentation

HyFed: A Hybrid Federated Framework for Privacy-preserving Machine Learning

2 code implementations21 May 2021 Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian Matschinske, Jan Baumbach, Daniel Rueckert, Georgios Kaissis

Federated learning (FL) enables multiple clients to jointly train a global model under the coordination of a central server.

Federated Learning

U-Noise: Learnable Noise Masks for Interpretable Image Segmentation

1 code implementation14 Jan 2021 Teddy Koker, FatemehSadat Mireshghallah, Tom Titcombe, Georgios Kaissis

Deep Neural Networks (DNNs) are widely used for decision making in a myriad of critical applications, ranging from medical to societal and even judicial.

Decision Making Semantic Segmentation

Efficient, high-performance pancreatic segmentation using multi-scale feature extraction

1 code implementation2 Sep 2020 Moritz Knolle, Georgios Kaissis, Friederike Jungmann, Sebastian Ziegelmayer, Daniel Sasse, Marcus Makowski, Daniel Rueckert, Rickmer Braren

For artificial intelligence-based image analysis methods to reach clinical applicability, the development of high-performance algorithms is crucial.

Cannot find the paper you are looking for? You can Submit a new open access paper.