no code implementations • ICML 2020 • Rafael Pinot, Raphael Ettedgui, Geovani Rizk, Yann Chevaleyre, Jamal Atif
We demonstrate the non-existence of a Nash equilibrium in our game when the classifier and the adversary are both deterministic, hence giving a negative answer to the above question in the deterministic regime.
1 code implementation • 30 May 2025 • Marc González, Rachid Guerraoui, Rafael Pinot, Geovani Rizk, John Stephan, François Taïani
We present ByzFL, an open-source Python library for developing and benchmarking robust federated learning (FL) algorithms.
no code implementations • 7 Aug 2024 • Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Käser, Antoine Bosselut
We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.
1 code implementation • 23 May 2024 • Rachid Guerraoui, Rafael Pinot, Geovani Rizk, John Stephan, François Taiani
Batch normalization has proven to be a very beneficial mechanism to accelerate the training and improve the accuracy of deep neural networks in centralized environments.
no code implementations • 23 May 2024 • Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Ahmed Jellouli, Geovani Rizk, John Stephan
Robust federated learning aims to maintain reliable performance despite the presence of adversarial or misbehaving workers.
no code implementations • 20 Feb 2024 • Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, Geovani Rizk, Sasha Voitovych
The natural approach to robustify FL against adversarial clients is to replace the simple averaging operation at the server in the standard $\mathsf{FedAvg}$ algorithm by a \emph{robust averaging rule}.
no code implementations • 1 Jun 2022 • Geovani Rizk, Igor Colin, Albert Thomas, Rida Laraki, Yann Chevaleyre
We propose the first regret-based approach to the Graphical Bilinear Bandits problem, where $n$ agents in a graph play a stochastic bilinear bandit game with each of their neighbors.
no code implementations • 22 Dec 2020 • Geovani Rizk, Igor Colin, Albert Thomas, Moez Draief
Experimental design is an approach for selecting samples among a given set so as to obtain the best estimator for a given criterion.
no code implementations • 14 Dec 2020 • Geovani Rizk, Albert Thomas, Igor Colin, Rida Laraki, Yann Chevaleyre
We study the best arm identification problem in which the learner wants to find the graph allocation maximizing the sum of the bilinear rewards.
1 code implementation • 26 Feb 2020 • Rafael Pinot, Raphael Ettedgui, Geovani Rizk, Yann Chevaleyre, Jamal Atif
We demonstrate the non-existence of a Nash equilibrium in our game when the classifier and the Adversary are both deterministic, hence giving a negative answer to the above question in the deterministic regime.