no code implementations • 8 Apr 2024 • Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, Giovanni Campagna
In the realm of web agent research, achieving both generalization and accuracy remains a challenging problem.
no code implementations • 9 Oct 2023 • Arth Bohra, Govert Verkes, Artem Harutyunyan, Pascal Weinberger, Giovanni Campagna
As a result, it is not possible for end-users to build classifiers for themselves.
1 code implementation • SIGDIAL (ACL) 2022 • Ethan A. Chi, Ashwin Paranjape, Abigail See, Caleb Chiam, Trenton Chang, Kathleen Kenealy, Swee Kiat Lim, Amelia Hardy, Chetanya Rastogi, Haojun Li, Alexander Iyabor, Yutong He, Hari Sowrirajan, Peng Qi, Kaushik Ram Sadagopan, Nguyet Minh Phu, Dilara Soylu, Jillian Tang, Avanika Narayan, Giovanni Campagna, Christopher D. Manning
We present Chirpy Cardinal, an open-domain social chatbot.
1 code implementation • 23 Mar 2022 • Monica S. Lam, Giovanni Campagna, Mehrad Moradshahi, Sina J. Semnani, Silei Xu
Task-oriented conversational agents rely on semantic parsers to translate natural language to formal representations.
1 code implementation • 4 Nov 2021 • Mehrad Moradshahi, Victoria Tsai, Giovanni Campagna, Monica S. Lam
On RiSAWOZ, CrossWOZ, CrossWOZ-EN, and MultiWOZ-ZH datasets we improve the state of the art by 11%, 17%, 20%, and 0. 3% in joint goal accuracy.
1 code implementation • NAACL 2021 • Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, Monica S Lam
RUSS consists of two models: First, a BERT-LSTM with pointers parses instructions to ThingTalk, a domain-specific language we design for grounding natural language on the web.
1 code implementation • EMNLP 2020 • Mehrad Moradshahi, Giovanni Campagna, Sina J. Semnani, Silei Xu, Monica S. Lam
We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language.
3 code implementations • EMNLP 2020 • Silei Xu, Sina J. Semnani, Giovanni Campagna, Monica S. Lam
To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset.
1 code implementation • Findings (ACL) 2022 • Giovanni Campagna, Sina J. Semnani, Ryan Kearns, Lucas Jun Koba Sato, Silei Xu, Monica S. Lam
Previous attempts to build effective semantic parsers for Wizard-of-Oz (WOZ) conversations suffer from the difficulty in acquiring a high-quality, manually annotated training set.
1 code implementation • ACL 2020 • Giovanni Campagna, Agata Foryciarz, Mehrad Moradshahi, Monica S. Lam
We show that data augmentation through synthesized data can improve the accuracy of zero-shot learning for both the TRADE model and the BERT-based SUMBT model on the MultiWOZ 2. 1 dataset.
3 code implementations • 16 Jan 2020 • Silei Xu, Giovanni Campagna, Jian Li, Monica S. Lam
The key concept is to cover the space of possible compound queries on the database with a large number of in-domain questions synthesized with the help of a corpus of generic query templates.
1 code implementation • 18 Apr 2019 • Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, Monica S. Lam
We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and using a neural semantic parser to translate natural language into VAPL code.