no code implementations • 20 Dec 2021 • Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, Ves Stoyanov
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings: in- and out-of-domain language modeling, zero- and few-shot priming, and full-shot fine-tuning.
no code implementations • ACL (RepL4NLP) 2021 • Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau
Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE benchmark by 0. 3% on average while handling 99 more languages.