Search Results for author: Giuseppe Di Guglielmo

Found 8 papers, 5 papers with code

Applications and Techniques for Fast Machine Learning in Science

no code implementations25 Oct 2021 Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC

no code implementations4 May 2021 Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin, Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok, Vladimir Loncar, Yingyi Luo, Llovizna Miranda, Jennifer Ngadiuba, Daniel Noonan, Seda Ogrenci-Memik, Maurizio Pierini, Sioni Summers, Nhan Tran

We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile.

Data Compression Quantization

Fast inference of Boosted Decision Trees in FPGAs for particle physics

3 code implementations5 Feb 2020 Sioni Summers, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Dylan Rankin, Nhan Tran, Zhenbin Wu

We describe the implementation of Boosted Decision Trees in the hls4ml library, which allows the translation of a trained model into FPGA firmware through an automated conversion process.

Translation

Cannot find the paper you are looking for? You can Submit a new open access paper.