no code implementations • 11 Jan 2024 • Seung Hyun Lee, Yinxiao Li, Junjie Ke, Innfarn Yoo, Han Zhang, Jiahui Yu, Qifei Wang, Fei Deng, Glenn Entis, Junfeng He, Gang Li, Sangpil Kim, Irfan Essa, Feng Yang
We use the novel multi-reward optimization algorithm to jointly optimize the T2I model and a prompt expansion network, resulting in significant improvement of image quality and also allow to control the trade-off of different rewards using a reward related prompt during inference.
4 code implementations • 1 Jun 2023 • Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, Dilip Krishnan
Pre-trained large text-to-image models synthesize impressive images with an appropriate use of text prompts.