no code implementations • 19 May 2020 • Cal Peyser, Tara N. Sainath, Golan Pundak
Proper nouns present a challenge for end-to-end (E2E) automatic speech recognition (ASR) systems in that a particular name may appear only rarely during training, and may have a pronunciation similar to that of a more common word.
no code implementations • 28 Mar 2020 • Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan, Ruoming Pang, Antoine Bruguier, Shuo-Yiin Chang, Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-Cheng Chiu, David Garcia, Alex Gruenstein, Ke Hu, Minho Jin, Anjuli Kannan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit Prabhavalkar, Golan Pundak, David Rybach, Yuan Shangguan, Yash Sheth, Trevor Strohman, Mirko Visontai, Yonghui Wu, Yu Zhang, Ding Zhao
Thus far, end-to-end (E2E) models have not been shown to outperform state-of-the-art conventional models with respect to both quality, i. e., word error rate (WER), and latency, i. e., the time the hypothesis is finalized after the user stops speaking.
no code implementations • 21 Jun 2019 • Ke Hu, Antoine Bruguier, Tara N. Sainath, Rohit Prabhavalkar, Golan Pundak
Contextual automatic speech recognition, i. e., biasing recognition towards a given context (e. g. user's playlists, or contacts), is challenging in end-to-end (E2E) models.
3 code implementations • 21 Feb 2019 • Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models.
2 code implementations • 15 Nov 2018 • Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-Yiin Chang, Kanishka Rao, Alexander Gruenstein
End-to-end (E2E) models, which directly predict output character sequences given input speech, are good candidates for on-device speech recognition.
no code implementations • 29 Oct 2018 • Uri Alon, Golan Pundak, Tara N. Sainath
Improving the representation of contextual information is key to unlocking the potential of end-to-end (E2E) automatic speech recognition (ASR).
no code implementations • 16 Aug 2018 • Arun Narayanan, Ananya Misra, Khe Chai Sim, Golan Pundak, Anshuman Tripathi, Mohamed Elfeky, Parisa Haghani, Trevor Strohman, Michiel Bacchiani
More importantly, such models generalize better to unseen conditions and allow for rapid adaptation -- we show that by using as little as 10 hours of data from a new domain, an adapted domain-invariant model can match performance of a domain-specific model trained from scratch using 70 times as much data.
no code implementations • 7 Aug 2018 • Golan Pundak, Tara N. Sainath, Rohit Prabhavalkar, Anjuli Kannan, Ding Zhao
Our approach, which we re- fer to as Contextual Listen, Attend and Spell (CLAS) jointly- optimizes the ASR components along with embeddings of the context n-grams.