1 code implementation • 25 Jul 2020 • Tiago Costa, Andres Laan, Francisco J. H. Heras, Gonzalo G. de Polavieja
We obtained this result by using recent advances in reinforcementlearning to systematically solve the inverse modeling problem: given an observedcollective behavior, we automatically find a policy generating it.
1 code implementation • 22 Jun 2020 • Francisco J. H. Heras, Gonzalo G. de Polavieja
The method finds the new classes close to the corresponding standard classes we took the data form.
1 code implementation • 13 Sep 2019 • Francisco J. H. Heras, Francisco Romero-Ferrero, Robert C. Hinz, Gonzalo G. de Polavieja
When using simulated trajectories, the model recovers the ground-truth interaction rule used to generate them, as well as the number of interacting neighbours.
no code implementations • 14 Mar 2018 • Fernando Martin-Maroto, Gonzalo G. de Polavieja
Here we propose a different approach to learning and generalization that is parameter-free, fully discrete and that does not use function minimization.
1 code implementation • 12 Mar 2018 • Francisco Romero-Ferrero, Mattia G. Bergomi, Robert Hinz, Francisco J. H. Heras, Gonzalo G. de Polavieja
Our understanding of collective animal behavior is limited by our ability to track each of the individuals.