Search Results for author: Gowtham R. Kurri

Found 4 papers, 0 papers with code

Addressing GAN Training Instabilities via Tunable Classification Losses

no code implementations27 Oct 2023 Monica Welfert, Gowtham R. Kurri, Kyle Otstot, Lalitha Sankar

Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error.

Classification

$(α_D,α_G)$-GANs: Addressing GAN Training Instabilities via Dual Objectives

no code implementations28 Feb 2023 Monica Welfert, Kyle Otstot, Gowtham R. Kurri, Lalitha Sankar

In an effort to address the training instabilities of GANs, we introduce a class of dual-objective GANs with different value functions (objectives) for the generator (G) and discriminator (D).

$α$-GAN: Convergence and Estimation Guarantees

no code implementations12 May 2022 Gowtham R. Kurri, Monica Welfert, Tyler Sypherd, Lalitha Sankar

We prove a two-way correspondence between the min-max optimization of general CPE loss function GANs and the minimization of associated $f$-divergences.

Realizing GANs via a Tunable Loss Function

no code implementations9 Jun 2021 Gowtham R. Kurri, Tyler Sypherd, Lalitha Sankar

We introduce a tunable GAN, called $\alpha$-GAN, parameterized by $\alpha \in (0,\infty]$, which interpolates between various $f$-GANs and Integral Probability Metric based GANs (under constrained discriminator set).

Cannot find the paper you are looking for? You can Submit a new open access paper.