no code implementations • 17 Sep 2024 • Jieyun Bai, ZiHao Zhou, Zhanhong Ou, Gregor Koehler, Raphael Stock, Klaus Maier-Hein, Marawan Elbatel, Robert Martí, Xiaomeng Li, Yaoyang Qiu, Panjie Gou, Gongping Chen, Lei Zhao, Jianxun Zhang, Yu Dai, Fangyijie Wang, Guénolé Silvestre, Kathleen Curran, Hongkun Sun, Jing Xu, Pengzhou Cai, Lu Jiang, Libin Lan, Dong Ni, Mei Zhong, Gaowen Chen, Víctor M. Campello, Yaosheng Lu, Karim Lekadir
This challenge aimed to enhance the development of automatic segmentation algorithms at an international scale, providing the largest dataset to date with 5, 101 intrapartum ultrasound images collected from two ultrasound machines across three hospitals from two institutions.
1 code implementation • 15 Nov 2023 • Jörg K. H. Franke, Michael Hefenbrock, Gregor Koehler, Frank Hutter
Unlike the uniform application of a single penalty, CPR enforces an upper bound on a statistical measure, such as the L2-norm, of individual parameter matrices.
no code implementations • 14 Sep 2023 • Gregor Koehler, Tassilo Wald, Constantin Ulrich, David Zimmerer, Paul F. Jaeger, Jörg K. H. Franke, Simon Kohl, Fabian Isensee, Klaus H. Maier-Hein
Using medical image segmentation as the evaluation environment, we show that latent feature recycling enables the network to iteratively refine initial predictions even beyond the iterations seen during training, converging towards an improved decision.
2 code implementations • 10 Aug 2023 • Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Shihao Ma, Adamo Young, Cheng Zhu, Kangkang Meng, Xin Yang, Ziyan Huang, Fan Zhang, Wentao Liu, YuanKe Pan, Shoujin Huang, Jiacheng Wang, Mingze Sun, Weixin Xu, Dengqiang Jia, Jae Won Choi, Natália Alves, Bram de Wilde, Gregor Koehler, Yajun Wu, Manuel Wiesenfarth, Qiongjie Zhu, Guoqiang Dong, Jian He, the FLARE Challenge Consortium, Bo wang
The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89. 5\%, 90. 9\%, and 88. 3\% on North American, European, and Asian cohorts, respectively.
no code implementations • 5 Jul 2023 • Tassilo Wald, Constantin Ulrich, Fabian Isensee, David Zimmerer, Gregor Koehler, Michael Baumgartner, Klaus H. Maier-Hein
Given an ensemble of independently trained models, this results in correlated predictions and common failure modes.
no code implementations • 10 Apr 2023 • Saikat Roy, Tassilo Wald, Gregor Koehler, Maximilian R. Rokuss, Nico Disch, Julius Holzschuh, David Zimmerer, Klaus H. Maier-Hein
Foundation models have taken over natural language processing and image generation domains due to the flexibility of prompting.
no code implementations • 9 Apr 2023 • Saikat Roy, Gregor Koehler, Michael Baumgartner, Constantin Ulrich, Jens Petersen, Fabian Isensee, Klaus Maier-Hein
Owing to success in the data-rich domain of natural images, Transformers have recently become popular in medical image segmentation.
1 code implementation • 17 Mar 2023 • Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee, Paul F. Jaeger, Klaus Maier-Hein
This leads to state-of-the-art performance on 4 tasks on CT and MRI modalities and varying dataset sizes, representing a modernized deep architecture for medical image segmentation.
Ranked #1 on
Medical Image Segmentation
on AMOS
no code implementations • 5 Jan 2023 • Carsten T. Lüth, David Zimmerer, Gregor Koehler, Paul F. Jaeger, Fabian Isensee, Jens Petersen, Klaus H. Maier-Hein
By utilizing the representations of contrastive learning, we aim to fix the over-fixation on low-level features and learn more semantic-rich representations.
no code implementations • 1 Jan 2021 • Jens Petersen, Paul F Jaeger, Gregor Koehler, David Zimmerer, Fabian Isensee, Klaus Maier-Hein
Neural Processes are a powerful tool for learning representations of function spaces purely from examples, in a way that allows them to perform predictions at test time conditioned on so-called context observations.
9 code implementations • 27 Sep 2018 • Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, Klaus H. Maier-Hein
The U-Net was presented in 2015.