4 code implementations • 3 Aug 2022 • Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, José Miguel Hernández-Lobato
Normalizing flows are tractable density models that can approximate complicated target distributions, e. g. Boltzmann distributions of physical systems.
2 code implementations • 15 Jun 2022 • Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, Gábor Csányi
In particular, we show that using four-body messages reduces the required number of message passing iterations to just two, resulting in a fast and highly parallelizable model, reaching or exceeding state-of-the-art accuracy on the rMD17, 3BPA, and AcAc benchmark tasks.
2 code implementations • 13 May 2022 • Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor N. C. Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, Gábor Csányi
The rapid progress of machine learning interatomic potentials over the past couple of years produced a number of new architectures.
1 code implementation • pproximateinference AABI Symposium 2022 • Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, José Miguel Hernández-Lobato
Normalizing flows are flexible, parameterized distributions that can be used to approximate expectations from intractable distributions via importance sampling.
1 code implementation • 29 Oct 2021 • Miguel García-Ortegón, Gregor N. C. Simm, Austin J. Tripp, José Miguel Hernández-Lobato, Andreas Bender, Sergio Bacallado
The field of machine learning for drug discovery is witnessing an explosion of novel methods.
no code implementations • NeurIPS Workshop AI4Scien 2021 • Austin Tripp, Gregor N. C. Simm, José Miguel Hernández-Lobato
De novo molecular design is a thriving research area in machine learning (ML) that lacks ubiquitous, high-quality, standardized benchmark tasks.
1 code implementation • ICLR 2021 • Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, José Miguel Hernández-Lobato
Automating molecular design using deep reinforcement learning (RL) has the potential to greatly accelerate the search for novel materials.
1 code implementation • ICML 2020 • Gregor N. C. Simm, Robert Pinsler, José Miguel Hernández-Lobato
Automating molecular design using deep reinforcement learning (RL) holds the promise of accelerating the discovery of new chemical compounds.
1 code implementation • ICML 2020 • Gregor N. C. Simm, José Miguel Hernández-Lobato
Great computational effort is invested in generating equilibrium states for molecular systems using, for example, Markov chain Monte Carlo.