Search Results for author: Guanchu Wang

Found 23 papers, 12 papers with code

Survey and Improvement Strategies for Gene Prioritization with Large Language Models

no code implementations30 Jan 2025 Matthew Neeley, Guantong Qi, Guanchu Wang, Ruixiang Tang, Dongxue Mao, Chaozhong Liu, Sasidhar Pasupuleti, Bo Yuan, Fan Xia, PengFei Liu, Zhandong Liu, Xia Hu

By utilizing HPO classification, novel multi-agent techniques, and our LLM strategy, we improved causal gene identification accuracy compared to our baseline evaluation.

Specificity

MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation

no code implementations31 Dec 2024 Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, Na Zou

Large Language Models (LLMs) are becoming essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.

Information Retrieval RAG +1

Personalizing Low-Rank Bayesian Neural Networks Via Federated Learning

no code implementations18 Oct 2024 Boning Zhang, Dongzhu Liu, Osvaldo Simeone, Guanchu Wang, Dimitrios Pezaros, Guangxu Zhu

We evaluate LR-BPFL across a variety of datasets, demonstrating its advantages in terms of calibration, accuracy, as well as computational and memory requirements.

Decision Making Personalized Federated Learning +1

Assessing and Enhancing Large Language Models in Rare Disease Question-answering

no code implementations15 Aug 2024 Guanchu Wang, Junhao Ran, Ruixiang Tang, Chia-Yuan Chang, Yu-Neng Chuang, Zirui Liu, Vladimir Braverman, Zhandong Liu, Xia Hu

In this work, we introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of LLMs in diagnosing rare diseases.

Question Answering

FaithLM: Towards Faithful Explanations for Large Language Models

no code implementations7 Feb 2024 Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Ruixiang Tang, Shaochen Zhong, Fan Yang, Mengnan Du, Xuanting Cai, Xia Hu

Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their extensive internal knowledge and reasoning capabilities.

Decision Making

TVE: Learning Meta-attribution for Transferable Vision Explainer

1 code implementation23 Dec 2023 Guanchu Wang, Yu-Neng Chuang, Fan Yang, Mengnan Du, Chia-Yuan Chang, Shaochen Zhong, Zirui Liu, Zhaozhuo Xu, Kaixiong Zhou, Xuanting Cai, Xia Hu

This meta-attribution leverages the versatility of generic backbone encoders to comprehensively encode the attribution knowledge for the input instance, which enables TVE to seamlessly transfer to explain various downstream tasks, without the need for training on task-specific data.

DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research

1 code implementation4 Sep 2023 Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla Reyes, Kaixiong Zhou, Xiaoqian Jiang, Xia Hu

The exponential growth in scholarly publications necessitates advanced tools for efficient article retrieval, especially in interdisciplinary fields where diverse terminologies are used to describe similar research.

named-entity-recognition Named Entity Recognition +5

DISPEL: Domain Generalization via Domain-Specific Liberating

no code implementations14 Jul 2023 Chia-Yuan Chang, Yu-Neng Chuang, Guanchu Wang, Mengnan Du, Na Zou

Domain generalization aims to learn a generalization model that can perform well on unseen test domains by only training on limited source domains.

Domain Generalization

Efficient GNN Explanation via Learning Removal-based Attribution

no code implementations9 Jun 2023 Yao Rong, Guanchu Wang, Qizhang Feng, Ninghao Liu, Zirui Liu, Enkelejda Kasneci, Xia Hu

A strategy of subgraph sampling is designed in LARA to improve the scalability of the training process.

Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model

1 code implementation NeurIPS 2023 Zirui Liu, Guanchu Wang, Shaochen Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Tang, Zhimeng Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, Xia Hu

While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation.

Language Modeling Language Modelling +1

Interactive System-wise Anomaly Detection

no code implementations21 Apr 2023 Guanchu Wang, Ninghao Liu, Daochen Zha, Xia Hu

Anomaly detection, where data instances are discovered containing feature patterns different from the majority, plays a fundamental role in various applications.

Anomaly Detection Data Poisoning +1

Chasing Fairness Under Distribution Shift: A Model Weight Perturbation Approach

1 code implementation NeurIPS 2023 Zhimeng Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Rui Chen, Na Zou, Xia Hu

Motivated by these sufficient conditions, we propose robust fairness regularization (RFR) by considering the worst case within the model weight perturbation ball for each sensitive attribute group.

Attribute Fairness

CoRTX: Contrastive Framework for Real-time Explanation

1 code implementation5 Mar 2023 Yu-Neng Chuang, Guanchu Wang, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Hu

In this work, we propose a COntrastive Real-Time eXplanation (CoRTX) framework to learn the explanation-oriented representation and relieve the intensive dependence of explainer training on explanation labels.

Contrastive Learning

Efficient XAI Techniques: A Taxonomic Survey

no code implementations7 Feb 2023 Yu-Neng Chuang, Guanchu Wang, Fan Yang, Zirui Liu, Xuanting Cai, Mengnan Du, Xia Hu

Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods.

Explainable artificial intelligence Explainable Artificial Intelligence (XAI) +1

DIVISION: Memory Efficient Training via Dual Activation Precision

1 code implementation5 Aug 2022 Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, Xia Hu

Activation compressed training provides a solution towards reducing the memory cost of training deep neural networks~(DNNs).

Quantization

Mitigating Algorithmic Bias with Limited Annotations

1 code implementation20 Jul 2022 Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Hu

Existing work on fairness modeling commonly assumes that sensitive attributes for all instances are fully available, which may not be true in many real-world applications due to the high cost of acquiring sensitive information.

Fairness

Accelerating Shapley Explanation via Contributive Cooperator Selection

1 code implementation17 Jun 2022 Guanchu Wang, Yu-Neng Chuang, Mengnan Du, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Hu

Even though Shapley value provides an effective explanation for a DNN model prediction, the computation relies on the enumeration of all possible input feature coalitions, which leads to the exponentially growing complexity.

Fairness via Representation Neutralization

no code implementations NeurIPS 2021 Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Hassan Awadallah, Xia Hu

This process not only requires a lot of instance-level annotations for sensitive attributes, it also does not guarantee that all fairness sensitive information has been removed from the encoder.

Attribute Classification +1

Cannot find the paper you are looking for? You can Submit a new open access paper.