no code implementations • 27 Apr 2023 • Guandao Yang, Abhijit Kundu, Leonidas J. Guibas, Jonathan T. Barron, Ben Poole
Neural Radiance Fields (NeRFs) have emerged as a powerful neural 3D representation for objects and scenes derived from 2D data.
1 code implementation • 9 Feb 2023 • Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan T. Barron, Thomas Funkhouser, Bharath Hariharan, Serge Belongie
We use this framework to design Fourier PNFs, which match state-of-the-art performance in signal representation tasks that use neural fields.
no code implementations • 8 Feb 2022 • Flora Yu Shen, Katie Luo, Guandao Yang, Harald Haraldsson, Serge Belongie
In this work, we address an important problem of optical see through (OST) augmented reality: non-negative image synthesis.
1 code implementation • CVPR 2021 • Katie Luo, Guandao Yang, Wenqi Xian, Harald Haraldsson, Bharath Hariharan, Serge Belongie
In applications such as optical see-through and projector augmented reality, producing images amounts to solving non-negative image generation, where one can only add light to an existing image.
1 code implementation • NeurIPS 2021 • Guandao Yang, Serge Belongie, Bharath Hariharan, Vladlen Koltun
Most existing geometry processing algorithms use meshes as the default shape representation.
1 code implementation • ECCV 2020 • Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, Bharath Hariharan
Point cloud generation thus amounts to moving randomly sampled points to high-density areas.
2 code implementations • 9 Oct 2019 • Tianyi Zhang, Zhiqiu Lin, Guandao Yang, Christopher De Sa
Low-precision training reduces computational cost and produces efficient models.
12 code implementations • ICCV 2019 • Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, Bharath Hariharan
Specifically, we learn a two-level hierarchy of distributions where the first level is the distribution of shapes and the second level is the distribution of points given a shape.
Ranked #3 on
Point Cloud Generation
on ShapeNet Car
2 code implementations • 26 Apr 2019 • Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, Christopher De Sa
Low precision operations can provide scalability, memory savings, portability, and energy efficiency.
no code implementations • 3 Oct 2018 • Omid Poursaeed, Guandao Yang, Aditya Prakash, Qiuren Fang, Hanqing Jiang, Bharath Hariharan, Serge Belongie
Estimating fundamental matrices is a classic problem in computer vision.
1 code implementation • ECCV 2018 • Guandao Yang, Yin Cui, Serge Belongie, Bharath Hariharan
It is expensive to label images with 3D structure or precise camera pose.
1 code implementation • CVPR 2018 • Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, Serge Belongie
To address these two challenges, we propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions.
2 code implementations • ICLR 2018 • Felix Wu, Ni Lao, John Blitzer, Guandao Yang, Kilian Weinberger
State-of-the-art deep reading comprehension models are dominated by recurrent neural nets.