Search Results for author: Guangli Li

Found 6 papers, 1 papers with code

ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models

1 code implementation21 Feb 2024 Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu, Guangli Li, Tao Yang, Maosong Sun

Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance.

Pinpointing the Memory Behaviors of DNN Training

no code implementations1 Apr 2021 Jiansong Li, Xiao Dong, Guangli Li, Peng Zhao, Xueying Wang, Xiaobing Chen, Xianzhi Yu, Yongxin Yang, Zihan Jiang, Wei Cao, Lei Liu, Xiaobing Feng

The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators.

Fusion-Catalyzed Pruning for Optimizing Deep Learning on Intelligent Edge Devices

no code implementations30 Oct 2020 Guangli Li, Xiu Ma, Xueying Wang, Lei Liu, Jingling Xue, Xiaobing Feng

The increasing computational cost of deep neural network models limits the applicability of intelligent applications on resource-constrained edge devices.

Network Pruning

Auto-tuning Neural Network Quantization Framework for Collaborative Inference Between the Cloud and Edge

no code implementations16 Dec 2018 Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, Xiaobing Feng

By analyzing the characteristics of layers in DNNs, an auto-tuning neural network quantization framework for collaborative inference is proposed.

Collaborative Inference Quantization

Cannot find the paper you are looking for? You can Submit a new open access paper.