Search Results for author: Guangzhong Sun

Found 13 papers, 6 papers with code

Are You Copying My Model? Protecting the Copyright of Large Language Models for EaaS via Backdoor Watermark

1 code implementation17 May 2023 Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Zhu, Lingjuan Lyu, Binxing Jiao, Tong Xu, Guangzhong Sun, Xing Xie

Companies have begun to offer Embedding as a Service (EaaS) based on these LLMs, which can benefit various natural language processing (NLP) tasks for customers.

Model extraction

AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning Rate and Momentum for Training Deep Neural Networks

no code implementations1 Mar 2023 Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong Sun, DaCheng Tao

Integrating SAM with adaptive learning rate and momentum acceleration, dubbed AdaSAM, has already been explored empirically to train large-scale deep neural networks without theoretical guarantee due to the triple difficulties in analyzing the coupled perturbation step, adaptive learning rate and momentum step.

Effective and Efficient Query-aware Snippet Extraction for Web Search

1 code implementation17 Oct 2022 Jingwei Yi, Fangzhao Wu, Chuhan Wu, Xiaolong Huang, Binxing Jiao, Guangzhong Sun, Xing Xie

In this paper, we propose an effective query-aware webpage snippet extraction method named DeepQSE, aiming to select a few sentences which can best summarize the webpage content in the context of input query.

Robust Quantity-Aware Aggregation for Federated Learning

no code implementations22 May 2022 Jingwei Yi, Fangzhao Wu, Huishuai Zhang, Bin Zhu, Tao Qi, Guangzhong Sun, Xing Xie

Federated learning (FL) enables multiple clients to collaboratively train models without sharing their local data, and becomes an important privacy-preserving machine learning framework.

Federated Learning Privacy Preserving

A Mutually Reinforced Framework for Pretrained Sentence Embeddings

no code implementations28 Feb 2022 Junhan Yang, Zheng Liu, Shitao Xiao, Jianxun Lian, Lijun Wu, Defu Lian, Guangzhong Sun, Xing Xie

Instead of relying on annotation heuristics defined by humans, it leverages the sentence representation model itself and realizes the following iterative self-supervision process: on one hand, the improvement of sentence representation may contribute to the quality of data annotation; on the other hand, more effective data annotation helps to generate high-quality positive samples, which will further improve the current sentence representation model.

Contrastive Learning Sentence Embeddings

UA-FedRec: Untargeted Attack on Federated News Recommendation

1 code implementation14 Feb 2022 Jingwei Yi, Fangzhao Wu, Bin Zhu, Yang Yu, Chao Zhang, Guangzhong Sun, Xing Xie

Our study reveals a critical security issue in existing federated news recommendation systems and calls for research efforts to address the issue.

Federated Learning News Recommendation +2

Efficient-FedRec: Efficient Federated Learning Framework for Privacy-Preserving News Recommendation

1 code implementation EMNLP 2021 Jingwei Yi, Fangzhao Wu, Chuhan Wu, Ruixuan Liu, Guangzhong Sun, Xing Xie

However, the computation and communication cost of directly learning many existing news recommendation models in a federated way are unacceptable for user clients.

Federated Learning News Recommendation +1

GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph

no code implementations NeurIPS 2021 Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, Xing Xie

The representation learning on textual graph is to generate low-dimensional embeddings for the nodes based on the individual textual features and the neighbourhood information.

Language Modelling Recommendation Systems +1

Hybrid Encoder: Towards Efficient and Precise Native AdsRecommendation via Hybrid Transformer Encoding Networks

no code implementations22 Apr 2021 Junhan Yang, Zheng Liu, Bowen Jin, Jianxun Lian, Defu Lian, Akshay Soni, Eun Yong Kang, Yajun Wang, Guangzhong Sun, Xing Xie

For the sake of efficient recommendation, conventional methods would generate user and advertisement embeddings independently with a siamese transformer encoder, such that approximate nearest neighbour search (ANN) can be leveraged.


DebiasedRec: Bias-aware User Modeling and Click Prediction for Personalized News Recommendation

no code implementations15 Apr 2021 Jingwei Yi, Fangzhao Wu, Chuhan Wu, Qifei Li, Guangzhong Sun, Xing Xie

The core of our method includes a bias representation module, a bias-aware user modeling module, and a bias-aware click prediction module.

News Recommendation

xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems

16 code implementations14 Mar 2018 Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, Guangzhong Sun

On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly.

Click-Through Rate Prediction Recommendation Systems

T-Drive: Driving Directions Based on Taxi Trajectories

no code implementations ACM SIGSPATIAL GIS 2010 2010 Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, Yan Huang

GPS-equipped taxis can be regarded as mobile sensors probing traffic flows on road surfaces, and taxi drivers are usually experienced in finding the fastest (quickest) route to a destination based on their knowledge.

Cannot find the paper you are looking for? You can Submit a new open access paper.