no code implementations • 20 Sep 2024 • Markus Unterdechler, Botond Fazekas, Guilherme Aresta, Hrvoje Bogunović
Data augmentation plays a crucial role in addressing the challenge of limited expert-annotated datasets in deep learning applications for retinal Optical Coherence Tomography (OCT) scans.
1 code implementation • 5 Feb 2024 • José Morano, Guilherme Aresta, Hrvoje Bogunović
The framework consists of a fully convolutional neural network that recursively refines semantic segmentation maps, correcting manifest classification errors and thus improving topological consistency.
Ranked #1 on Classification on LES-AV
1 code implementation • 2 Feb 2024 • José Morano, Guilherme Aresta, Christoph Grechenig, Ursula Schmidt-Erfurth, Hrvoje Bogunović
The use of multimodal imaging has led to significant improvements in the diagnosis and treatment of many diseases.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
no code implementations • 18 Aug 2023 • Botond Fazekas, José Morano, Dmitrii Lachinov, Guilherme Aresta, Hrvoje Bogunović
The Segment Anything Model (SAM) has gained significant attention in the field of image segmentation due to its impressive capabilities and prompt-based interface.
1 code implementation • 6 Jul 2023 • José Morano, Guilherme Aresta, Dmitrii Lachinov, Julia Mai, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Moreover, the proposed SSL method allows further improvement of this performance by up to 23%, and we show that the SSL is beneficial regardless of the network architecture.
1 code implementation • 3 Feb 2023 • Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez
Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible.
no code implementations • 26 Oct 2022 • Botond Fazekas, Dmitrii Lachinov, Guilherme Aresta, Julia Mai, Ursula Schmidt-Erfurth, Hrvoje Bogunovic
Bruch's membrane (BM) segmentation on optical coherence tomography (OCT) is a pivotal step for the diagnosis and follow-up of age-related macular degeneration (AMD), one of the leading causes of blindness in the developed world.
1 code implementation • 1 Jul 2022 • Botond Fazekas, Guilherme Aresta, Dmitrii Lachinov, Sophie Riedl, Julia Mai, Ursula Schmidt-Erfurth, Hrvoje Bogunovic
Optical coherence tomography (OCT) is a non-invasive 3D modality widely used in ophthalmology for imaging the retina.
no code implementations • 25 Feb 2022 • Teresa Araújo, Guilherme Aresta, Hrvoje Bogunovic
The development of automatic tools for early glaucoma diagnosis with color fundus photographs can significantly reduce the impact of this disease.
no code implementations • 8 Nov 2021 • Eduardo Conde-Sousa, João Vale, Ming Feng, Kele Xu, Yin Wang, Vincenzo Della Mea, David La Barbera, Ehsan Montahaei, Mahdieh Soleymani Baghshah, Andreas Turzynski, Jacob Gildenblat, Eldad Klaiman, Yiyu Hong, Guilherme Aresta, Teresa Araújo, Paulo Aguiar, Catarina Eloy, António Polónia
Breast cancer is the most common malignancy in women, being responsible for more than half a million deaths every year.
no code implementations • 19 Nov 2019 • João Pedrosa, Guilherme Aresta, Carlos Ferreira, Márcio Rodrigues, Patrícia Leitão, André Silva Carvalho, João Rebelo, Eduardo Negrão, Isabel Ramos, António Cunha, Aurélio Campilho
Lung cancer is the deadliest type of cancer worldwide and late detection is the major factor for the low survival rate of patients.
no code implementations • 25 Oct 2019 • Teresa Araújo, Guilherme Aresta, Luís Mendonça, Susana Penas, Carolina Maia, Ângela Carneiro, Ana Maria Mendonça, Aurélio Campilho
We show that high QWK values occur for images with low prediction uncertainty, thus indicating that this uncertainty is a valid measure of the predictions' quality.
no code implementations • 9 Oct 2019 • Guilherme Aresta, Carlos Ferreira, João Pedrosa, Teresa Araújo, João Rebelo, Eduardo Negrão, Margarida Morgado, Filipe Alves, António Cunha, Isabel Ramos, Aurélio Campilho
Likewise, combining the findings of radiologist with the detection algorithm only for low fixation regions still significantly improves the detection sensitivity without increasing the number of false-positives.
1 code implementation • 30 Nov 2018 • Guilherme Aresta, Colin Jacobs, Teresa Araújo, António Cunha, Isabel Ramos, Bram van Ginneken, Aurélio Campilho
We propose iW-Net, a deep learning model that allows for both automatic and interactive segmentation of lung nodules in computed tomography images.
no code implementations • 9 Oct 2018 • Teresa Araújo, Guilherme Aresta, Adrian Galdran, Pedro Costa, Ana Maria Mendonça, Aurélio Campilho
We propose UOLO, a novel framework for the simultaneous detection and segmentation of structures of interest in medical images.
no code implementations • 13 Aug 2018 • Guilherme Aresta, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mohammed Safwan, Varghese Alex, Bahram Marami, Marcel Prastawa, Monica Chan, Michael Donovan, Gerardo Fernandez, Jack Zeineh, Matthias Kohl, Christoph Walz, Florian Ludwig, Stefan Braunewell, Maximilian Baust, Quoc Dang Vu, Minh Nguyen Nhat To, Eal Kim, Jin Tae Kwak, Sameh Galal, Veronica Sanchez-Freire, Nadia Brancati, Maria Frucci, Daniel Riccio, Yaqi Wang, Lingling Sun, Kaiqiang Ma, Jiannan Fang, Ismael Kone, Lahsen Boulmane, Aurélio Campilho, Catarina Eloy, António Polónia, Paulo Aguiar
From the submitted algorithms it was possible to push forward the state-of-the-art in terms of accuracy (87%) in automatic classification of breast cancer with histopathological images.
no code implementations • 10 Mar 2017 • Adrian Galdran, Aitor Alvarez-Gila, Maria Ines Meyer, Cristina L. Saratxaga, Teresa Araújo, Estibaliz Garrote, Guilherme Aresta, Pedro Costa, A. M. Mendonça, Aurélio Campilho
Specifically, we apply the \emph{shades of gray} color constancy technique to color-normalize the entire training set of images, while retaining the estimated illuminants.