no code implementations • 16 Oct 2024 • Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet, Guy Wolf, Ian Adelstein, Tim G. J. Rudner, Smita Krishnaswamy
GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space.
2 code implementations • 20 Jun 2024 • Chen Liu, Ke Xu, Liangbo L. Shen, Guillaume Huguet, Zilong Wang, Alexander Tong, Danilo Bzdok, Jay Stewart, Jay C. Wang, Lucian V. Del Priore, Smita Krishnaswamy
We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods.
1 code implementation • 30 May 2024 • Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, Alexander Tong, Avishek Joey Bose
Proteins are essential for almost all biological processes and derive their diverse functions from complex 3D structures, which are in turn determined by their amino acid sequences.
1 code implementation • 4 Dec 2023 • Danqi Liao, Chen Liu, Benjamin W. Christensen, Alexander Tong, Guillaume Huguet, Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to compute reliably in high dimensions.
1 code implementation • 3 Oct 2023 • Avishek Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, Alexander Tong
The computational design of novel protein structures has the potential to impact numerous scientific disciplines greatly.
1 code implementation • 7 Jul 2023 • Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio
We present simulation-free score and flow matching ([SF]$^2$M), a simulation-free objective for inferring stochastic dynamics given unpaired samples drawn from arbitrary source and target distributions.
no code implementations • 5 Jun 2023 • Samuel Leone, Aarthi Venkat, Guillaume Huguet, Alexander Tong, Guy Wolf, Smita Krishnaswamy
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation between the pair of distributions on the graph.
1 code implementation • 1 Jun 2023 • Oluwadamilola Fasina, Guillaume Huguet, Alexander Tong, Yanlei Zhang, Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
Although data diffusion embeddings are ubiquitous in unsupervised learning and have proven to be a viable technique for uncovering the underlying intrinsic geometry of data, diffusion embeddings are inherently limited due to their discrete nature.
1 code implementation • International Conference on Machine Learning Workshop on TAGML 2023 • Danqi Liao*, Chen Liu*, Alexander Tong, Guillaume Huguet, Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
We also see that there is an increase in DSMI with the class label over time.
1 code implementation • NeurIPS 2023 • Guillaume Huguet, Alexander Tong, Edward De Brouwer, Yanlei Zhang, Guy Wolf, Ian Adelstein, Smita Krishnaswamy
Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE).
4 code implementations • 1 Feb 2023 • Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, Yoshua Bengio
CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models.
no code implementations • 2 Nov 2022 • Guillaume Huguet, Alexander Tong, María Ramos Zapatero, Christopher J. Tape, Guy Wolf, Smita Krishnaswamy
Efficient computation of optimal transport distance between distributions is of growing importance in data science.
no code implementations • 29 Jun 2022 • Guillaume Huguet, D. S. Magruder, Alexander Tong, Oluwadamilola Fasina, Manik Kuchroo, Guy Wolf, Smita Krishnaswamy
In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define.
no code implementations • 28 Mar 2022 • Guillaume Huguet, Alexander Tong, Bastian Rieck, Jessie Huang, Manik Kuchroo, Matthew Hirn, Guy Wolf, Smita Krishnaswamy
From a geometric perspective, we obtain convergence bounds based on the smallest transition probability and the radius of the data, whereas from a spectral perspective, our bounds are based on the eigenspectrum of the diffusion kernel.
no code implementations • 26 Jul 2021 • Alexander Tong, Guillaume Huguet, Dennis Shung, Amine Natik, Manik Kuchroo, Guillaume Lajoie, Guy Wolf, Smita Krishnaswamy
We propose to compare and organize such datasets of graph signals by using an earth mover's distance (EMD) with a geodesic cost over the underlying graph.
1 code implementation • 25 Feb 2021 • Alexander Tong, Guillaume Huguet, Amine Natik, Kincaid MacDonald, Manik Kuchroo, Ronald Coifman, Guy Wolf, Smita Krishnaswamy
Here, Diffusion EMD can derive distances between patients on the manifold of cells at least two orders of magnitude faster than equally accurate methods.