1 code implementation • EMNLP 2020 • Elena V. Epure, Guillaume Salha, Manuel Moussallam, Romain Hennequin
The music genre perception expressed through human annotations of artists or albums varies significantly across language-bound cultures.
Cultural Vocal Bursts Intensity Prediction Information Retrieval +2
1 code implementation • 16 Sep 2020 • Elena V. Epure, Guillaume Salha, Romain Hennequin
However, without a parallel corpus, previous solutions could not handle tag systems in other languages, being limited to the English-language only.
1 code implementation • 14 Sep 2020 • Walid Bendada, Guillaume Salha, Théo Bontempelli
Media services providers, such as music streaming platforms, frequently leverage swipeable carousels to recommend personalized content to their users.
no code implementations • JEPTALNRECITAL 2020 • Elena V. Epure, Guillaume Salha, F{\'e}lix Voituret, Marion Baranes, Romain Hennequin
Au sein de cette d{\'e}monstration, nous pr{\'e}sentons Muzeeglot, une interface web permettant de visualiser des espaces de repr{\'e}sentations de genres musicaux provenant de sources vari{\'e}es et de langues diff{\'e}rentes.
2 code implementations • 5 Feb 2020 • Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam, Michalis Vazirgiannis
Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embedding methods, but suffer from scalability issues.
1 code implementation • 21 Jan 2020 • Guillaume Salha, Romain Hennequin, Michalis Vazirgiannis
Over the last few years, graph autoencoders (AE) and variational autoencoders (VAE) emerged as powerful node embedding methods, with promising performances on challenging tasks such as link prediction and node clustering.
1 code implementation • 2 Oct 2019 • Guillaume Salha, Romain Hennequin, Michalis Vazirgiannis
Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods, with promising performances on challenging tasks such as link prediction and node clustering.
3 code implementations • 23 May 2019 • Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet Anh Tran, Michalis Vazirgiannis
Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods.
1 code implementation • 23 Feb 2019 • Guillaume Salha, Romain Hennequin, Viet Anh Tran, Michalis Vazirgiannis
In this paper, we present a general framework to scale graph autoencoders (AE) and graph variational autoencoders (VAE).
no code implementations • 23 Apr 2017 • Guillaume Salha, Nikolaos Tziortziotis, Michalis Vazirgiannis
This paper examines the problem of adaptive influence maximization in social networks.
Social and Information Networks