2 code implementations • 9 Oct 2024 • Mathilde Papillon, Guillermo Bernárdez, Claudio Battiloro, Nina Miolane
Combinatorial Complex Neural Networks (CCNNs), fairly general TDL models, have been shown to be more expressive and better performing than GNNs.
no code implementations • 8 Sep 2024 • Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).
1 code implementation • 4 Feb 2024 • Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Ruben Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes.
no code implementations • 21 Aug 2023 • Guillermo Bernárdez, Lev Telyatnikov, Eduard Alarcón, Albert Cabellos-Aparicio, Pere Barlet-Ros, Pietro Liò
Recently emerged Topological Deep Learning (TDL) methods aim to extend current Graph Neural Networks (GNN) by naturally processing higher-order interactions, going beyond the pairwise relations and local neighborhoods defined by graph representations.
no code implementations • 9 Aug 2023 • Guillermo Bernárdez, José Suárez-Varela, Xiang Shi, Shihan Xiao, Xiangle Cheng, Pere Barlet-Ros, Albert Cabellos-Aparicio
The ECN configuration is thus a crucial aspect on the performance of CC protocols.
no code implementations • 31 Mar 2023 • Guillermo Bernárdez, José Suárez-Varela, Albert López, Xiang Shi, Shihan Xiao, Xiangle Cheng, Pere Barlet-Ros, Albert Cabellos-Aparicio
In this paper, we present MAGNNETO, a distributed ML-based framework that leverages Multi-Agent Reinforcement Learning and Graph Neural Networks for distributed TE optimization.
no code implementations • 23 Dec 2022 • Ángela López-Cardona, Guillermo Bernárdez, Pere Barlet-Ros, Albert Cabellos-Aparicio
We propose a novel architecture based on the Proximal Policy Optimization algorithm with Graph Neural Networks to solve the Optimal Power Flow.
1 code implementation • 3 Sep 2021 • Guillermo Bernárdez, José Suárez-Varela, Albert López, Bo Wu, Shihan Xiao, Xiangle Cheng, Pere Barlet-Ros, Albert Cabellos-Aparicio
In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE.
BIG-bench Machine Learning Multi-agent Reinforcement Learning +1
1 code implementation • 26 Jul 2021 • José Suárez-Varela, Miquel Ferriol-Galmés, Albert López, Paul Almasan, Guillermo Bernárdez, David Pujol-Perich, Krzysztof Rusek, Loïck Bonniot, Christoph Neumann, François Schnitzler, François Taïani, Martin Happ, Christian Maier, Jia Lei Du, Matthias Herlich, Peter Dorfinger, Nick Vincent Hainke, Stefan Venz, Johannes Wegener, Henrike Wissing, Bo Wu, Shihan Xiao, Pere Barlet-Ros, Albert Cabellos-Aparicio
During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments.