Search Results for author: Guodong Long

Found 88 papers, 40 papers with code

Continual Task Allocation in Meta-Policy Network via Sparse Prompting

1 code implementation29 May 2023 Yijun Yang, Tianyi Zhou, Jing Jiang, Guodong Long, Yuhui Shi

How to train a generalizable meta-policy by continually learning a sequence of tasks?

Spatial-temporal Prompt Learning for Federated Weather Forecasting

no code implementations23 May 2023 Shengchao Chen, Guodong Long, Tao Shen, Tianyi Zhou, Jing Jiang

Federated weather forecasting is a promising collaborative learning framework for analyzing meteorological data across participants from different countries and regions, thus embodying a global-scale real-time weather data predictive analytics platform to tackle climate change.

Weather Forecasting

IFedRec: Item-Guided Federated Aggregation for Cold-Start

no code implementations22 May 2023 Chunxu Zhang, Guodong Long, Tianyi Zhou, Xiangyu Zhao, Zijian Zhang, Bo Yang

To recommend cold items, existing federated recommendation models require collecting new interactions from users and retraining the model, which is time-consuming and poses a privacy threat to users' sensitive information.

Graph-guided Personalization for Federated Recommendation

no code implementations13 May 2023 Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijjian Zhang, Bo Yang

Federated Recommendation is a new service architecture providing recommendations without sharing user data with the server.

Knowledge Refinement via Interaction Between Search Engines and Large Language Models

1 code implementation12 May 2023 Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong Long, Dongyan Zhao, Daxin Jiang

Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern search engines (SEs).

Information Retrieval Retrieval

Large Language Models are Strong Zero-Shot Retriever

no code implementations27 Apr 2023 Tao Shen, Guodong Long, Xiubo Geng, Chongyang Tao, Tianyi Zhou, Daxin Jiang

In this work, we propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.

Language Modelling Retrieval

Does Continual Learning Equally Forget All Parameters?

no code implementations9 Apr 2023 Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL.

Continual Learning

Neural Time Series Analysis with Fourier Transform: A Survey

1 code implementation4 Feb 2023 Kun Yi, Qi Zhang, Shoujin Wang, Hui He, Guodong Long, Zhendong Niu

However, although increasing attention has been attracted and research is flourishing in this emerging area, there lacks a systematic review of the variety of existing studies in the area.

Time Series Analysis

Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks

no code implementations27 Jan 2023 Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

To address these challenges, we create a small model for a new task from the pruned models of similar tasks.

Style-Aware Contrastive Learning for Multi-Style Image Captioning

no code implementations26 Jan 2023 Yucheng Zhou, Guodong Long

Existing multi-style image captioning methods show promising results in generating a caption with accurate visual content and desired linguistic style.

Contrastive Learning Image Captioning +1

Multimodal Event Transformer for Image-guided Story Ending Generation

no code implementations26 Jan 2023 Yucheng Zhou, Guodong Long

Specifically, we construct visual and semantic event graphs from story plots and ending image, and leverage event-based reasoning to reason and mine implicit information in a single modality.

Improving Cross-modal Alignment for Text-Guided Image Inpainting

no code implementations26 Jan 2023 Yucheng Zhou, Guodong Long

Text-guided image inpainting (TGII) aims to restore missing regions based on a given text in a damaged image.

Image Inpainting Image Restoration

Federated Recommendation with Additive Personalization

no code implementations22 Jan 2023 Zhiwei Li, Guodong Long, Tianyi Zhou

To address these challenges, we propose Federated Recommendation with Additive Personalization (FedRAP), which learns a global view of items via FL and a personalized view locally on each user.

Federated Learning Recommendation Systems

Prompt Federated Learning for Weather Forecasting: Toward Foundation Models on Meteorological Data

1 code implementation22 Jan 2023 Shengchao Chen, Guodong Long, Tao Shen, Jing Jiang

To relieve the data exposure concern across regions, a novel federated learning approach has been proposed to collaboratively learn a brand-new spatio-temporal Transformer-based foundation model across participants with heterogeneous meteorological data.

Federated Learning Time Series Analysis +1

Dual Personalization on Federated Recommendation

1 code implementation16 Jan 2023 Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, Bo Yang

Moreover, we provide visualizations and in-depth analysis of the personalization techniques in item embedding, which shed novel insights on the design of recommender systems in federated settings.

Privacy Preserving Recommendation Systems

Fine-Grained Distillation for Long Document Retrieval

no code implementations20 Dec 2022 Yucheng Zhou, Tao Shen, Xiubo Geng, Chongyang Tao, Guodong Long, Can Xu, Daxin Jiang

Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder.

Knowledge Distillation Retrieval

Federated Learning on Non-IID Graphs via Structural Knowledge Sharing

1 code implementation23 Nov 2022 Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, Chengqi Zhang

Inspired by this, we propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph federated learning tasks.

Federated Learning Graph Learning

CCPrompt: Counterfactual Contrastive Prompt-Tuning for Many-Class Classification

no code implementations11 Nov 2022 Yang Li, Canran Xu, Tao Shen, Jing Jiang, Guodong Long

The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space.

Classification Entity Typing +5

Unsupervised Knowledge Graph Construction and Event-centric Knowledge Infusion for Scientific NLI

no code implementations27 Oct 2022 Chenglin Wang, Yucheng Zhou, Guodong Long, Xiaodong Wang, Xiaowei Xu

Therefore, we propose an unsupervised knowledge graph construction method to build a scientific knowledge graph (SKG) without any labeled data.

graph construction Natural Language Inference

Federated Learning from Pre-Trained Models: A Contrastive Learning Approach

no code implementations21 Sep 2022 Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, Jing Jiang

To prevent these issues from hindering the deployment of FL systems, we propose a lightweight framework where clients jointly learn to fuse the representations generated by multiple fixed pre-trained models rather than training a large-scale model from scratch.

Contrastive Learning Federated Learning

Towards Robust Ranker for Text Retrieval

no code implementations16 Jun 2022 Yucheng Zhou, Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Guodong Long, Binxing Jiao, Daxin Jiang

A ranker plays an indispensable role in the de facto 'retrieval & rerank' pipeline, but its training still lags behind -- learning from moderate negatives or/and serving as an auxiliary module for a retriever.

Passage Retrieval Retrieval +1

FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels

no code implementations20 May 2022 Zhuowei Wang, Tianyi Zhou, Guodong Long, Bo Han, Jing Jiang

Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices.

Federated Learning Learning with noisy labels

Personalized Federated Learning With Graph

1 code implementation2 Mar 2022 Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, Jing Jiang

We propose a novel structured federated learning (SFL) framework to learn both the global and personalized models simultaneously using client-wise relation graphs and clients' private data.

Personalized Federated Learning

On the Convergence of Clustered Federated Learning

no code implementations13 Feb 2022 Jie Ma, Guodong Long, Tianyi Zhou, Jing Jiang, Chengqi Zhang

Knowledge sharing and model personalization are essential components to tackle the non-IID challenge in federated learning (FL).

Federated Learning

CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

1 code implementation NeurIPS 2021 Shuang Ao, Tianyi Zhou, Guodong Long, Qinghua Lu, Liming Zhu, Jing Jiang

Next, a bottom-up traversal of the tree trains the RL agent from easier sub-tasks with denser rewards on bottom layers to harder ones on top layers and collects its cost on each sub-task train the planner in the next episode.

Continuous Control reinforcement-learning +1

EventBERT: A Pre-Trained Model for Event Correlation Reasoning

no code implementations13 Oct 2021 Yucheng Zhou, Xiubo Geng, Tao Shen, Guodong Long, Daxin Jiang

Event correlation reasoning infers whether a natural language paragraph containing multiple events conforms to human common sense.

Cloze Test Common Sense Reasoning +1

Uncertainty Regularized Policy Learning for Offline Reinforcement Learning

no code implementations29 Sep 2021 Han Zheng, Jing Jiang, Pengfei Wei, Guodong Long, Xuan Song, Chengqi Zhang

URPL adds an uncertainty regularization term in the policy learning objective to enforce to learn a more stable policy under the offline setting.

D4RL Offline RL +2

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

no code implementations29 Sep 2021 Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Liming Zhu, Chengqi Zhang

Can we find a better initialization for a new task, e. g., a much smaller network closer to the final pruned model, by exploiting its similar tasks?

EAT-C: Environment-Adversarial sub-Task Curriculum for Efficient Reinforcement Learning

no code implementations29 Sep 2021 Shuang Ao, Tianyi Zhou, Jing Jiang, Guodong Long, Xuan Song, Chengqi Zhang

They are complementary in acquiring more informative feedback for RL: the planning policy provides dense reward of finishing easier sub-tasks while the environment policy modifies these sub-tasks to be adequately challenging and diverse so the RL agent can quickly adapt to different tasks/environments.

reinforcement-learning Reinforcement Learning (RL)

Hierarchical Relation-Guided Type-Sentence Alignment for Long-Tail Relation Extraction with Distant Supervision

no code implementations Findings (NAACL) 2022 Yang Li, Guodong Long, Tao Shen, Jing Jiang

It consists of (1) a pairwise type-enriched sentence encoding module injecting both context-free and -related backgrounds to alleviate sentence-level wrong labeling, and (2) a hierarchical type-sentence alignment module enriching a sentence with the triple fact's basic attributes to support long-tail relations.

Knowledge Graphs Relation Extraction +1

Sequential Diagnosis Prediction with Transformer and Ontological Representation

1 code implementation7 Sep 2021 Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang

Sequential diagnosis prediction on the Electronic Health Record (EHR) has been proven crucial for predictive analytics in the medical domain.

Sequential Diagnosis

TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting

1 code implementation25 Aug 2021 Zonghan Wu, Da Zheng, Shirui Pan, Quan Gan, Guodong Long, George Karypis

This paper aims to unify spatial dependency and temporal dependency in a non-Euclidean space while capturing the inner spatial-temporal dependencies for traffic data.

Federated Learning for Open Banking

no code implementations24 Aug 2021 Guodong Long, Yue Tan, Jing Jiang, Chengqi Zhang

In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning.

Federated Learning

Federated Learning for Privacy-Preserving Open Innovation Future on Digital Health

no code implementations24 Aug 2021 Guodong Long, Tao Shen, Yue Tan, Leah Gerrard, Allison Clarke, Jing Jiang

Implementing an open innovation framework in the healthcare industry, namely open health, is to enhance innovation and creative capability of health-related organisations by building a next-generation collaborative framework with partner organisations and the research community.

Federated Learning Privacy Preserving

Multi-Center Federated Learning: Clients Clustering for Better Personalization

1 code implementation19 Aug 2021 Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang, Chengqi Zhang

By comparison, a mixture of multiple global models could capture the heterogeneity across various clients if assigning the client to different global models (i. e., centers) in FL.

Decision Making Federated Learning

Reasoning over Entity-Action-Location Graph for Procedural Text Understanding

no code implementations ACL 2021 Hao Huang, Xiubo Geng, Jian Pei, Guodong Long, Daxin Jiang

Procedural text understanding aims at tracking the states (e. g., create, move, destroy) and locations of the entities mentioned in a given paragraph.

graph construction Procedural Text Understanding +1

MIPO: Mutual Integration of Patient Journey and Medical Ontology for Healthcare Representation Learning

1 code implementation20 Jul 2021 Xueping Peng, Guodong Long, Sen Wang, Jing Jiang, Allison Clarke, Clement Schlegel, Chengqi Zhang

Hence, some recent works train healthcare representations by incorporating medical ontology, by self-supervised tasks like diagnosis prediction, but (1) the small-scale, monotonous ontology is insufficient for robust learning, and (2) critical contexts or dependencies underlying patient journeys are barely exploited to enhance ontology learning.

Graph Embedding Ontology Embedding

FedProto: Federated Prototype Learning across Heterogeneous Clients

2 code implementations1 May 2021 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, Chengqi Zhang

Heterogeneity across clients in federated learning (FL) usually hinders the optimization convergence and generalization performance when the aggregation of clients' knowledge occurs in the gradient space.

Federated Learning

Task Aligned Generative Meta-learning for Zero-shot Learning

no code implementations3 Mar 2021 Zhe Liu, Yun Li, Lina Yao, Xianzhi Wang, Guodong Long

Zero-shot learning (ZSL) refers to the problem of learning to classify instances from the novel classes (unseen) that are absent in the training set (seen).

Generalized Zero-Shot Learning Meta-Learning

Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning

no code implementations25 Feb 2021 Shaoxiong Ji, Teemu Saravirta, Shirui Pan, Guodong Long, Anwar Walid

Federated learning is a new learning paradigm that decouples data collection and model training via multi-party computation and model aggregation.

Federated Learning Meta-Learning +3

Isometric Propagation Network for Generalized Zero-shot Learning

no code implementations ICLR 2021 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang

To resolve this problem, we propose Isometric Propagation Network (IPN), which learns to strengthen the relation between classes within each space and align the class dependency in the two spaces.

Generalized Zero-Shot Learning

Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task

no code implementations24 Jan 2021 Xiaohan Zhang, Lu Liu, Guodong Long, Jing Jiang, Shenquan Liu

Typical methods to study cognitive function are to record the electrical activities of animal neurons during the training of animals performing behavioral tasks.

Decision Making Hippocampus +2

Extract Local Inference Chains of Deep Neural Nets

no code implementations1 Jan 2021 Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

In this paper, we introduce an efficient method, \name, to extract the local inference chains by optimizing a differentiable sparse scoring for the filters and layers to preserve the outputs on given data from a local region.

Interpretable Machine Learning Network Pruning

MASP: Model-Agnostic Sample Propagation for Few-shot learning

no code implementations1 Jan 2021 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Xuanyi Dong, Chengqi Zhang

Few-shot learning aims to train a classifier given only a few samples per class that are highly insufficient to describe the whole data distribution.

Few-Shot Learning

SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning

no code implementations2 Dec 2020 Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang Niu, Guodong Long

We also instantiate our framework with different combinations, which set the new state of the art on benchmark-simulated and real-world datasets with noisy labels.

Learning with noisy labels

Confusable Learning for Large-class Few-Shot Classification

no code implementations6 Nov 2020 Bingcong Li, Bo Han, Zhuowei Wang, Jing Jiang, Guodong Long

Specifically, our method maintains a dynamically updating confusion matrix, which analyzes confusable classes in the dataset.

Classification Few-Shot Image Classification +2

Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention

2 code implementations COLING 2020 Yang Li, Tao Shen, Guodong Long, Jing Jiang, Tianyi Zhou, Chengqi Zhang

Then, facilitated by the proposed base model, we introduce collaborating relation features shared among relations in the hierarchies to promote the relation-augmenting process and balance the training data for long-tail relations.

Relation Extraction

Attribute Propagation Network for Graph Zero-shot Learning

no code implementations24 Sep 2020 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes.

Meta-Learning Zero-Shot Learning

BiteNet: Bidirectional Temporal Encoder Network to Predict Medical Outcomes

1 code implementation24 Sep 2020 Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang, Chengqi Zhang

Electronic health records (EHRs) are longitudinal records of a patient's interactions with healthcare systems.

Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy

1 code implementation28 Jun 2020 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings.

Few-Shot Learning

Self-Attention Enhanced Patient Journey Understanding in Healthcare System

1 code implementation15 Jun 2020 Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang

The key challenge of patient journey understanding is to design an effective encoding mechanism which can properly tackle the aforementioned multi-level structured patient journey data with temporal sequential visits and a set of medical codes.

Interpretable Time-series Classification on Few-shot Samples

1 code implementation3 Jun 2020 Wensi Tang, Lu Liu, Guodong Long

Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples.

Classification Few-Shot Learning +3

Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

2 code implementations24 May 2020 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic.

Graph Learning Multivariate Time Series Forecasting +1

Multi-Center Federated Learning: Clients Clustering for Better Personalization

3 code implementations3 May 2020 Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang, Chengqi Zhang

However, due to the diverse nature of user behaviors, assigning users' gradients to different global models (i. e., centers) can better capture the heterogeneity of data distributions across users.

Federated Learning

Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion

1 code implementation30 Apr 2020 Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Yi Chang

In experiments, we achieve state-of-the-art performance on three benchmarks and a zero-shot dataset for link prediction, with highlights of inference costs reduced by 1-2 orders of magnitude compared to a textual encoding method.

Graph Embedding Link Prediction

Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning

no code implementations EMNLP 2020 Tao Shen, Yi Mao, Pengcheng He, Guodong Long, Adam Trischler, Weizhu Chen

In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text.

Entity Linking Knowledge Base Completion +5

Omni-Scale CNNs: a simple and effective kernel size configuration for time series classification

3 code implementations ICLR 2022 Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, Jing Jiang

Particularly, it is a set of kernel sizes that can efficiently cover the best RF size across different datasets via consisting of multiple prime numbers according to the length of the time series.

General Classification Time Series Analysis +1

Temporal Self-Attention Network for Medical Concept Embedding

1 code implementation15 Sep 2019 Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing Jiang, Michael Blumenstein

In this paper, we propose a medical concept embedding method based on applying a self-attention mechanism to represent each medical concept.

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

7 code implementations31 May 2019 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang

Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system.

Temporal Sequences Traffic Prediction

MahiNet: A Neural Network for Many-Class Few-Shot Learning with Class Hierarchy

no code implementations ICLR 2019 Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

It addresses the ``many-class'' problem by exploring the class hierarchy, e. g., the coarse-class label that covers a subset of fine classes, which helps to narrow down the candidates for the fine class and is cheaper to obtain.

Few-Shot Learning General Classification

DAGCN: Dual Attention Graph Convolutional Networks

1 code implementation4 Apr 2019 Fengwen Chen, Shirui Pan, Jing Jiang, Huan Huo, Guodong Long

In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems.

General Classification Graph Classification +1

Learning Graph Embedding with Adversarial Training Methods

no code implementations4 Jan 2019 Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang

Based on this framework, we derive two variants of adversarial models, the adversarially regularized graph autoencoder (ARGA) and its variational version, adversarially regularized variational graph autoencoder (ARVGA), to learn the graph embedding effectively.

Graph Clustering Graph Embedding +2

A Comprehensive Survey on Graph Neural Networks

5 code implementations3 Jan 2019 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu

In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields.

BIG-bench Machine Learning Image Classification +2

Learning Private Neural Language Modeling with Attentive Aggregation

4 code implementations17 Dec 2018 Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing Jiang, Zi Huang

Federated learning (FL) provides a promising approach to learning private language modeling for intelligent personalized keyboard suggestion by training models in distributed clients rather than training in a central server.

Federated Learning Language Modelling

NeuRec: On Nonlinear Transformation for Personalized Ranking

no code implementations8 May 2018 Shuai Zhang, Lina Yao, Aixin Sun, Sen Wang, Guodong Long, Manqing Dong

Modeling user-item interaction patterns is an important task for personalized recommendations.

Recommendation Systems

Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together

2 code implementations NAACL 2019 Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies.

Multi-modality Sensor Data Classification with Selective Attention

no code implementations16 Apr 2018 Xiang Zhang, Lina Yao, Chaoran Huang, Sen Wang, Mingkui Tan, Guodong Long, Can Wang

Multimodal wearable sensor data classification plays an important role in ubiquitous computing and has a wide range of applications in scenarios from healthcare to entertainment.

Classification General Classification

Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Modeling

1 code implementation ICLR 2018 Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

In this paper, we propose a model, called "bi-directional block self-attention network (Bi-BloSAN)", for RNN/CNN-free sequence encoding.

Adversarially Regularized Graph Autoencoder for Graph Embedding

4 code implementations13 Feb 2018 Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, Chengqi Zhang

Graph embedding is an effective method to represent graph data in a low dimensional space for graph analytics.

Graph Clustering Graph Embedding +1

Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention for Sequence Modeling

1 code implementation31 Jan 2018 Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang, Chengqi Zhang

In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other.

Hard Attention Natural Language Inference

DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding

1 code implementation14 Sep 2017 Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, Chengqi Zhang

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively.

Natural Language Inference Sentence Embedding +1

Dynamic Concept Composition for Zero-Example Event Detection

no code implementations14 Jan 2016 Xiaojun Chang, Yi Yang, Guodong Long, Chengqi Zhang, Alexander G. Hauptmann

In this paper, we focus on automatically detecting events in unconstrained videos without the use of any visual training exemplars.

Event Detection Zero-Shot Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.