no code implementations • 15 Mar 2022 • Ye Li, Jianan Cui, Junyu Chen, Guodong Zeng, Scott Wollenweber, Floris Jansen, Se-In Jang, Kyungsang Kim, Kuang Gong, Quanzheng Li
Our hypothesis is that by explicitly providing the local relative noise level of the input image to a deep convolutional neural network (DCNN), the DCNN can outperform itself trained on image appearance only.
no code implementations • 28 Oct 2021 • Yunxiang Li, Jingxiong Li, Ruilong Dan, Shuai Wang, Kai Jin, Guodong Zeng, Jun Wang, Xiangji Pan, Qianni Zhang, Huiyu Zhou, Qun Jin, Li Wang, Yaqi Wang
To mitigate this problem, a novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.
1 code implementation • 30 Sep 2021 • Yunxiang Li, Shuai Wang, Jun Wang, Guodong Zeng, Wenjun Liu, Qianni Zhang, Qun Jin, Yaqi Wang
In this paper, we propose a novel end-to-end U-Net like Group Transformer Network (GT U-Net) for the tooth root segmentation.
1 code implementation • 2 May 2021 • Yunxiang Li, Guodong Zeng, Yifan Zhang, Jun Wang, Qianni Zhang, Qun Jin, Lingling Sun, Qisi Lian, Neng Xia, Ruizi Peng, Kai Tang, Yaqi Wang, Shuai Wang
Accurate evaluation of the treatment result on X-ray images is a significant and challenging step in root canal therapy since the incorrect interpretation of the therapy results will hamper timely follow-up which is crucial to the patients' treatment outcome.
no code implementations • 4 Mar 2021 • Fabian Balsiger, Alain Jungo, Naren Akash R J, Jianan Chen, Ivan Ezhov, Shengnan Liu, Jun Ma, Johannes C. Paetzold, Vishva Saravanan R, Anjany Sekuboyina, Suprosanna Shit, Yannick Suter, Moshood Yekini, Guodong Zeng, Markus Rempfler
With this growth, however, come new challenges for the community.
no code implementations • 23 Dec 2020 • Guodong Zeng, Till D. Lerch, Florian Schmaranzer, Guoyan Zheng, Juergen Burger, Kate Gerber, Moritz Tannast, Klaus Siebenrock, Nicolas Gerber
In this paper, we propose intra- and cross-modality semantic consistency (ICMSC) for UDA and our key insight is that the segmentation of synthesised images in different styles should be consistent.
1 code implementation • 1 Apr 2019 • Hugo J. Kuijf, J. Matthijs Biesbroek, Jeroen de Bresser, Rutger Heinen, Simon Andermatt, Mariana Bento, Matt Berseth, Mikhail Belyaev, M. Jorge Cardoso, Adrià Casamitjana, D. Louis Collins, Mahsa Dadar, Achilleas Georgiou, Mohsen Ghafoorian, Dakai Jin, April Khademi, Jesse Knight, Hongwei Li, Xavier Lladó, Miguel Luna, Qaiser Mahmood, Richard McKinley, Alireza Mehrtash, Sébastien Ourselin, Bo-yong Park, HyunJin Park, Sang Hyun Park, Simon Pezold, Elodie Puybareau, Leticia Rittner, Carole H. Sudre, Sergi Valverde, Verónica Vilaplana, Roland Wiest, Yongchao Xu, Ziyue Xu, Guodong Zeng, Jian-Guo Zhang, Guoyan Zheng, Christopher Chen, Wiesje van der Flier, Frederik Barkhof, Max A. Viergever, Geert Jan Biessels
Segmentation methods had to be containerized and submitted to the challenge organizers.
no code implementations • 21 Feb 2019 • Xiahai Zhuang, Lei LI, Christian Payer, Darko Stern, Martin Urschler, Mattias P. Heinrich, Julien Oster, Chunliang Wang, Orjan Smedby, Cheng Bian, Xin Yang, Pheng-Ann Heng, Aliasghar Mortazi, Ulas Bagci, Guanyu Yang, Chenchen Sun, Gaetan Galisot, Jean-Yves Ramel, Thierry Brouard, Qianqian Tong, Weixin Si, Xiangyun Liao, Guodong Zeng, Zenglin Shi, Guoyan Zheng, Chengjia Wang, Tom MacGillivray, David Newby, Kawal Rhode, Sebastien Ourselin, Raad Mohiaddin, Jennifer Keegan, David Firmin, Guang Yang
This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017.
no code implementations • 24 Dec 2018 • Guodong Zeng, Guoyan Zheng
In this paper, we propose a novel Holistic Decomposition Convolution (HDC), for an effective and efficient semantic segmentation of volumetric images.
no code implementations • 5 Dec 2017 • Rens Janssens, Guodong Zeng, Guoyan Zheng
We present a method to address the challenging problem of segmentation of lumbar vertebrae from CT images acquired with varying fields of view.
no code implementations • 28 Nov 2017 • Guodong Zeng, Guoyan Zheng
We present a method to address the challenging problem of segmentation of multi-modality isointense infant brain MR images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF).