1 code implementation • 26 Jul 2021 • Debesh Jha, Pia H. Smedsrud, Dag Johansen, Thomas de Lange, Håvard D. Johansen, Pål Halvorsen, Michael A. Riegler
To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation.
Ranked #1 on
Medical Image Segmentation
on CVC-VideoClinicDB
no code implementations • 5 Jul 2021 • Debesh Jha, Sharib Ali, Nikhil Kumar Tomar, Michael A. Riegler, Dag Johansen, Håvard D. Johansen, Pål Halvorsen
Minimally invasive surgery is a surgical intervention used to examine the organs inside the abdomen and has been widely used due to its effectiveness over open surgery.
Ranked #1 on
Medical Image Segmentation
on ROBUST-MIS
1 code implementation • 16 May 2021 • Abhishek Srivastava, Debesh Jha, Sukalpa Chanda, Umapada Pal, Håvard D. Johansen, Dag Johansen, Michael A. Riegler, Sharib Ali, Pål Halvorsen
The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets.
Ranked #3 on
Medical Image Segmentation
on 2018 Data Science Bowl
1 code implementation • 22 Apr 2021 • Debesh Jha, Nikhil Kumar Tomar, Sharib Ali, Michael A. Riegler, Håvard D. Johansen, Dag Johansen, Thomas de Lange, Pål Halvorsen
To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices.
Ranked #1 on
Medical Image Segmentation
on KvasirCapsule-SEG
Colorectal Polyps Characterization
Instrument Recognition
+3
1 code implementation • 31 Mar 2021 • Nikhil Kumar Tomar, Debesh Jha, Michael A. Riegler, Håvard D. Johansen, Dag Johansen, Jens Rittscher, Pål Halvorsen, Sharib Ali
We propose a novel architecture called feedback attention network (FANet) that unifies the previous epoch mask with the feature map of the current training epoch.
Ranked #1 on
Medical Image Segmentation
on EM
1 code implementation • 6 Jan 2021 • Debesh Jha, Anis Yazidi, Michael A. Riegler, Dag Johansen, Håvard D. Johansen, Pål Halvorsen
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks.
1 code implementation • 30 Dec 2020 • Nikhil Kumar Tomar, Debesh Jha, Sharib Ali, Håvard D. Johansen, Dag Johansen, Michael A. Riegler, Pål Halvorsen
Colonoscopy is the gold standard for examination and detection of colorectal polyps.
1 code implementation • 15 Nov 2020 • Debesh Jha, Sharib Ali, Nikhil Kumar Tomar, Håvard D. Johansen, Dag D. Johansen, Jens Rittscher, Michael A. Riegler, Pål Halvorsen
Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks.
1 code implementation • 23 Oct 2020 • Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A. Hicks, VajiraThambawita, Enrique Garcia-Ceja, Michael A. Riegler, Thomas de Lange, Peter T. Schmidt, Håvard D. Johansen, Dag Johansen, Pål Halvorsen
Additionally, we provide a baseline for the segmentation of the GI tools to promote research and algorithm development.
Ranked #2 on
Medical Image Segmentation
on Kvasir-Instrument
3 code implementations • 8 Jun 2020 • Debesh Jha, Michael A. Riegler, Dag Johansen, Pål Halvorsen, Håvard D. Johansen
The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.
no code implementations • 8 May 2020 • Vajira Thambawita, Debesh Jha, Hugo Lewi Hammer, Håvard D. Johansen, Dag Johansen, Pål Halvorsen, Michael A. Riegler
A clear understanding of evaluation metrics and machine learning models with cross datasets is crucial to bring research in the field to a new quality level.
no code implementations • 16 Nov 2019 • Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, Håvard D. Johansen
In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist.
Ranked #1 on
Polyp Segmentation
on Kvasir-SEG
(DSC metric)
no code implementations • 31 Oct 2018 • Vajira Thambawita, Debesh Jha, Michael Riegler, Pål Halvorsen, Hugo Lewi Hammer, Håvard D. Johansen, Dag Johansen
In this paper, we present our approach for the 2018 Medico Task classifying diseases in the gastrointestinal tract.