1 code implementation • 25 Nov 2024 • Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, Bernhard Kainz
Evaluation reveals that current diffusion models converge to limited subsets of the real distribution, with no current state-of-the-art models superpassing 77% of the diversity of the training data.
no code implementations • 7 Nov 2024 • Mischa Dombrowski, Hadrien Reynaud, Bernhard Kainz
Our findings indicate that only up to 30. 8% of the training videos are learned in latent video diffusion models, which could explain the lack of performance when training downstream tasks on synthetic data.
no code implementations • 5 Oct 2024 • Muhammad Haaris Khan, Hadrien Reynaud, Bernhard Kainz
Furthermore, an exploration of the VAE embedding used for latent diffusion models is performed, resulting in interesting theoretical insights such as a method for human-interpretable latent spaces.
no code implementations • 21 Sep 2024 • Hadrien Reynaud, Matthew Baugh, Mischa Dombrowski, Sarah Cechnicka, Qingjie Meng, Bernhard Kainz
We introduce the Joint Video-Image Diffusion model (JVID), a novel approach to generating high-quality and temporally coherent videos.
1 code implementation • 18 Jul 2024 • Sarah Cechnicka, James Ball, Matthew Baugh, Hadrien Reynaud, Naomi Simmonds, Andrew P. T. Smith, Catherine Horsfield, Candice Roufosse, Bernhard Kainz
Diagnosing medical conditions from histopathology data requires a thorough analysis across the various resolutions of Whole Slide Images (WSI).
2 code implementations • 2 Jun 2024 • Hadrien Reynaud, Qingjie Meng, Mischa Dombrowski, Arijit Ghosh, Thomas Day, Alberto Gomez, Paul Leeson, Bernhard Kainz
To make medical datasets accessible without sharing sensitive patient information, we introduce a novel end-to-end approach for generative de-identification of dynamic medical imaging data.
1 code implementation • 2 Dec 2023 • Sarah Cechnicka, Hadrien Reynaud, James Ball, Naomi Simmonds, Catherine Horsfield, Andrew Smith, Candice Roufosse, Bernhard Kainz
Diagnoses from histopathology images rely on information from both high and low resolutions of Whole Slide Images.
no code implementations • 2 Nov 2023 • Hadrien Reynaud, Bernhard Kainz
This work presents an extensive hyperparameter search on Image Diffusion Models for Echocardiogram generation.
1 code implementation • 25 May 2023 • Ibrahim Ethem Hamamci, Sezgin Er, Anjany Sekuboyina, Enis Simsar, Alperen Tezcan, Ayse Gulnihan Simsek, Sevval Nil Esirgun, Furkan Almas, Irem Dogan, Muhammed Furkan Dasdelen, Chinmay Prabhakar, Hadrien Reynaud, Sarthak Pati, Christian Bluethgen, Mehmet Kemal Ozdemir, Bjoern Menze
GenerateCT, the first approach to generating 3D medical imaging conditioned on free-form medical text prompts, incorporates a text encoder and three key components: a novel causal vision transformer for encoding 3D CT volumes, a text-image transformer for aligning CT and text tokens, and a text-conditional super-resolution diffusion model.
no code implementations • 19 Apr 2023 • Sarah Cechnicka, James Ball, Hadrien Reynaud, Callum Arthurs, Candice Roufosse, Bernhard Kainz
Geometric image augmentation is commonly used to improve robustness for average case predictions and to enrich limited datasets.
1 code implementation • 31 Mar 2023 • Mischa Dombrowski, Hadrien Reynaud, Johanna P. Müller, Matthew Baugh, Bernhard Kainz
Recent advancements in diffusion models have significantly impacted the trajectory of generative machine learning research, with many adopting the strategy of fine-tuning pre-trained models using domain-specific text-to-image datasets.
1 code implementation • 22 Mar 2023 • Hadrien Reynaud, Mengyun Qiao, Mischa Dombrowski, Thomas Day, Reza Razavi, Alberto Gomez, Paul Leeson, Bernhard Kainz
So far, video generation has only been possible by providing input data that is as rich as the output data, e. g., image sequence plus conditioning in, video out.
1 code implementation • ICCV 2023 • Mischa Dombrowski, Hadrien Reynaud, Matthew Baugh, Bernhard Kainz
Curating datasets for object segmentation is a difficult task.
no code implementations • 29 Dec 2022 • Mischa Dombrowski, Hadrien Reynaud, Matthew Baugh, Bernhard Kainz
Curating datasets for object segmentation is a difficult task.
no code implementations • 6 Jun 2022 • Athanasios Vlontzos, Hadrien Reynaud, Bernhard Kainz
Curating a large scale medical imaging dataset for machine learning applications is both time consuming and expensive.
1 code implementation • 3 Jun 2022 • Hadrien Reynaud, Athanasios Vlontzos, Mischa Dombrowski, Ciarán Lee, Arian Beqiri, Paul Leeson, Bernhard Kainz
Causally-enabled machine learning frameworks could help clinicians to identify the best course of treatments by answering counterfactual questions.
1 code implementation • 19 Dec 2021 • Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Datwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gomez, Pablo Arbelaez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-min Pei, Murat AK, Sarahi Rosas-Gonzalez, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Lofstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-Andre Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel
In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation.
1 code implementation • 5 Nov 2021 • Cesare Magnetti, Hadrien Reynaud, Bernhard Kainz
This paper presents the use of Multi-Agent Reinforcement Learning (MARL) to perform navigation in 3D anatomical volumes from medical imaging.
Computed Tomography (CT) Multi-agent Reinforcement Learning +4
1 code implementation • 2 Jul 2021 • Hadrien Reynaud, Athanasios Vlontzos, Benjamin Hou, Arian Beqiri, Paul Leeson, Bernhard Kainz
We achieve an average frame distance of 3. 36 frames for the ES and 7. 17 frames for the ED on videos of arbitrary length.