no code implementations • 24 Apr 2024 • Haifeng Qian, Sujan Kumar Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda, Ramesh Nallapati, Sudipta Sengupta, Xiaofei Ma, Anoop Deoras
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models.
no code implementations • 11 Apr 2024 • Yuhao Zhang, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu, Sanjay Krishna Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma, Anoop Deoras
Code generation models are not robust to small perturbations, which often lead to inconsistent and incorrect generations and significantly degrade the performance of these models.
no code implementations • 13 Mar 2024 • Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian Ding, Qing Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, Ramesh Nallapati, Sudipta Sengupta, Bing Xiang
This study introduces bifurcated attention, a method designed to enhance language model inference in shared-context batch decoding scenarios.
1 code implementation • 28 Feb 2024 • Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, Haifeng Qian
Large Language Models are powerful tools for program synthesis and advanced auto-completion, but come with no guarantee that their output code is syntactically correct.
no code implementations • 9 Mar 2023 • Xiaokai Wei, Sujan Gonugondla, Wasi Ahmad, Shiqi Wang, Baishakhi Ray, Haifeng Qian, Xiaopeng Li, Varun Kumar, Zijian Wang, Yuchen Tian, Qing Sun, Ben Athiwaratkun, Mingyue Shang, Murali Krishna Ramanathan, Parminder Bhatia, Bing Xiang
Such large models incur significant resource usage (in terms of memory, latency, and dollars) as well as carbon footprint.
2 code implementations • 20 Dec 2022 • Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan, Dan Roth, Bing Xiang
Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation.
2 code implementations • 26 Oct 2022 • Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, Bing Xiang
Using these benchmarks, we are able to assess the performance of code generation models in a multi-lingual fashion, and discovered generalization ability of language models on out-of-domain languages, advantages of multi-lingual models over mono-lingual, the ability of few-shot prompting to teach the model new languages, and zero-shot translation abilities even on mono-lingual settings.
no code implementations • 25 Sep 2021 • Haifeng Qian, Radu Marinescu, Alexander Gray, Debarun Bhattacharjya, Francisco Barahona, Tian Gao, Ryan Riegel, Pravinda Sahu
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.
no code implementations • 10 Jun 2021 • Haifeng Qian
The new techniques are evaluated on MNIST and Fashion-MNIST, with no adversarial training.
no code implementations • 23 Feb 2021 • Liuqiao Chen, Hu Wang, Benjamin Zi Hao Zhao, Minhui Xue, Haifeng Qian
Deep Neural Networks have achieved unprecedented success in the field of face recognition such that any individual can crawl the data of others from the Internet without their explicit permission for the purpose of training high-precision face recognition models, creating a serious violation of privacy.
1 code implementation • 23 Jun 2020 • Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita Likhyani, Santosh Srivastava
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning).
no code implementations • 21 Jun 2020 • Jialin Wen, Benjamin Zi Hao Zhao, Minhui Xue, Alina Oprea, Haifeng Qian
To this end, we analyze and develop a new poisoning attack algorithm.
no code implementations • 10 Sep 2019 • Haifeng Qian
The second is supervised learning: a robust MNIST classifier for 4 and 9, which is the most challenging pair of digits.
no code implementations • ICLR 2019 • Haifeng Qian, Mark N. Wegman
This paper proposes a class of well-conditioned neural networks in which a unit amount of change in the inputs causes at most a unit amount of change in the outputs or any of the internal layers.