1 code implementation • 8 Dec 2023 • Michael Plainer, Hannes Stärk, Charlotte Bunne, Stephan Günnemann
Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery.
1 code implementation • 9 Oct 2023 • Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi Jaakkola
A significant amount of protein function requires binding small molecules, including enzymatic catalysis.
1 code implementation • 17 Jul 2023 • Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, Yuqing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, Shuiwang Ji
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences.
1 code implementation • 8 Apr 2023 • Mohamed Amine Ketata, Cedrik Laue, Ruslan Mammadov, Hannes Stärk, Menghua Wu, Gabriele Corso, Céline Marquet, Regina Barzilay, Tommi S. Jaakkola
Understanding how proteins structurally interact is crucial to modern biology, with applications in drug discovery and protein design.
1 code implementation • 27 Jan 2023 • Xiangyu Zhao, Hannes Stärk, Dominique Beaini, Yiren Zhao, Pietro Liò
Existing GNN benchmarking methods for molecular representation learning focus on comparing the GNNs' performances on some node/graph classification/regression tasks on certain datasets.
no code implementations • 28 Oct 2022 • Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, Haggai Maron
Graph neural networks (GNNs) are the primary tool for processing graph-structured data.
1 code implementation • 11 Oct 2022 • Ilia Igashov, Hannes Stärk, Clément Vignac, Victor Garcia Satorras, Pascal Frossard, Max Welling, Michael Bronstein, Bruno Correia
Additionally, the model automatically determines the number of atoms in the linker and its attachment points to the input fragments.
2 code implementations • 4 Oct 2022 • Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi Jaakkola
We instead frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses.
Ranked #1 on Blind Docking on PDBbind (Top-1 RMSD (Med.) metric)
1 code implementation • 30 Apr 2022 • Ahmed A. A. Elhag, Gabriele Corso, Hannes Stärk, Michael M. Bronstein
Traditional Graph Neural Networks (GNNs) rely on message passing, which amounts to permutation-invariant local aggregation of neighbour features.
1 code implementation • 7 Feb 2022 • Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, Tommi Jaakkola
Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery.
Ranked #6 on Blind Docking on PDBBind
1 code implementation • NeurIPS Workshop AI4Scien 2021 • Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, Pietro Liò
Molecular property prediction is one of the fastest-growing applications of deep learning with critical real-world impacts.
no code implementations • 29 Sep 2021 • Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, Pietro Lio
Molecular property prediction is one of the fastest-growing applications of deep learning with critical real-world impacts.
1 code implementation • 23 Aug 2021 • Zekarias T. Kefato, Sarunas Girdzijauskas, Hannes Stärk
Recently, a number of SSL methods for graph representation learning have achieved performance comparable to SOTA semi-supervised GNNs.