no code implementations • 24 Mar 2023 • Hanxue Liang, Tianhao Wu, Param Hanji, Francesco Banterle, Hongyun Gao, Rafal Mantiuk, Cengiz Oztireli
We measured the quality of videos synthesized by several NVS methods in a well-controlled perceptual quality assessment experiment as well as with many existing state-of-the-art image/video quality metrics.
no code implementations • 17 Mar 2023 • Tianhao Wu, Hanxue Liang, Fangcheng Zhong, Gernot Riegler, Shimon Vainer, Cengiz Oztireli
While neural radiance field (NeRF) based methods can model semi-transparency and achieve photo-realistic quality in synthesized novel views, their volumetric geometry representation tightly couples geometry and opacity, and therefore cannot be easily converted into surfaces without introducing artifacts.
1 code implementation • 26 Oct 2022 • Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang Wang
However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task.
1 code implementation • 21 Jun 2021 • Jiageng Mao, Minzhe Niu, Chenhan Jiang, Hanxue Liang, Jingheng Chen, Xiaodan Liang, Yamin Li, Chaoqiang Ye, Wei zhang, Zhenguo Li, Jie Yu, Hang Xu, Chunjing Xu
To facilitate future research on exploiting unlabeled data for 3D detection, we additionally provide a benchmark in which we reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
no code implementations • ICCV 2021 • Hanxue Liang, Chenhan Jiang, Dapeng Feng, Xin Chen, Hang Xu, Xiaodan Liang, Wei zhang, Zhenguo Li, Luc van Gool
Here we present a novel self-supervised 3D Object detection framework that seamlessly integrates the geometry-aware contrast and clustering harmonization to lift the unsupervised 3D representation learning, named GCC-3D.