Search Results for author: Hanyu Zhao

Found 7 papers, 1 papers with code

Instance-wise Prompt Tuning for Pretrained Language Models

no code implementations4 Jun 2022 Yuezihan Jiang, Hao Yang, Junyang Lin, Hanyu Zhao, An Yang, Chang Zhou, Hongxia Yang, Zhi Yang, Bin Cui

Prompt Learning has recently gained great popularity in bridging the gap between pretraining tasks and various downstream tasks.

WuDaoMM: A large-scale Multi-Modal Dataset for Pre-training models

no code implementations22 Mar 2022 Sha Yuan, Shuai Zhao, Jiahong Leng, Zhao Xue, Hanyu Zhao, Peiyu Liu, Zheng Gong, Wayne Xin Zhao, Junyi Li, Jie Tang

The results show that WuDaoMM can be applied as an efficient dataset for VLPMs, especially for the model in text-to-image generation task.

Image Captioning Question Answering +1

ZOOMER: Boosting Retrieval on Web-scale Graphs by Regions of Interest

1 code implementation20 Mar 2022 Yuezihan Jiang, Yu Cheng, Hanyu Zhao, Wentao Zhang, Xupeng Miao, Yu He, Liang Wang, Zhi Yang, Bin Cui

We introduce ZOOMER, a system deployed at Taobao, the largest e-commerce platform in China, for training and serving GNN-based recommendations over web-scale graphs.

Retrieval

Calculating Question Similarity is Enough: A New Method for KBQA Tasks

no code implementations15 Nov 2021 Hanyu Zhao, Sha Yuan, Jiahong Leng, Xiang Pan, Guoqiang Wang, Ledell Wu, Jie Tang

Knowledge Base Question Answering (KBQA) aims to answer natural language questions with the help of an external knowledge base.

Entity Linking Knowledge Base Question Answering +3

MSD: Multi-Self-Distillation Learning via Multi-classifiers within Deep Neural Networks

no code implementations21 Nov 2019 Yunteng Luan, Hanyu Zhao, Zhi Yang, Yafei Dai

In this paper, we propose a general training framework named multi-self-distillation learning (MSD), which mining knowledge of different classifiers within the same network and increase every classifier accuracy.

Image Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.