no code implementations • COLING 2022 • Jamell Dacon, Haochen Liu, Jiliang Tang
In this work, we conduct a pioneering study of the English variety use of African American English (AAE) in NLI task.
no code implementations • 16 Sep 2023 • Xu Weng, Keck Voon Ling, Haochen Liu
We present a neural network for mitigating pseudorange bias to improve localization performance with data collected from Android smartphones.
no code implementations • 15 Sep 2023 • Haochen Liu, Sai Krishna Rallabandi, Yijing Wu, Parag Pravin Dakle, Preethi Raghavan
Sentiment analysis is a crucial task in natural language processing that involves identifying and extracting subjective sentiment from text.
no code implementations • 16 Feb 2023 • Xiao Chen, Wenqi Fan, Jingfan Chen, Haochen Liu, Zitao Liu, Zhaoxiang Zhang, Qing Li
Pairwise learning strategies are prevalent for optimizing recommendation models on implicit feedback data, which usually learns user preference by discriminating between positive (i. e., clicked by a user) and negative items (i. e., obtained by negative sampling).
1 code implementation • 24 Aug 2022 • Haochen Liu, Zhiyu Huang, Xiaoyu Mo, Chen Lv
Decision-making for urban autonomous driving is challenging due to the stochastic nature of interactive traffic participants and the complexity of road structures.
1 code implementation • 31 Jul 2022 • Haochen Liu, Zhiyu Huang, Chen Lv
Therefore, this paper proposes a novel Multi-modal Hierarchical Transformer network that fuses the vectorized (agent motion) and visual (scene flow, map, and occupancy) modalities and jointly predicts the flow and occupancy of the scene.
no code implementations • ACL 2022 • Haochen Liu, Joseph Thekinen, Sinem Mollaoglu, Da Tang, Ji Yang, Youlong Cheng, Hui Liu, Jiliang Tang
We conduct experiments on both synthetic and real-world datasets.
no code implementations • 12 Jul 2021 • Haochen Liu, Yiqi Wang, Wenqi Fan, Xiaorui Liu, Yaxin Li, Shaili Jain, Yunhao Liu, Anil K. Jain, Jiliang Tang
In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society.
no code implementations • 12 Jun 2021 • Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang
Unlike existing algorithms, the proposed controller can adaptively generate the loss probabilities for different data examples according to their varied convergence behaviors.
no code implementations • Findings (ACL) 2021 • Haochen Liu, Wei Jin, Hamid Karimi, Zitao Liu, Jiliang Tang
The results show that the text classification models trained under our proposed framework outperform traditional models significantly in terms of fairness, and also slightly in terms of classification performance.
no code implementations • COLING 2020 • Haochen Liu, Zitao Liu, Zhongqin Wu, Jiliang Tang
The automatic evaluation for school assignments is an important application of AI in the education field.
1 code implementation • EMNLP 2020 • Haochen Liu, Wentao Wang, Yiqi Wang, Hui Liu, Zitao Liu, Jiliang Tang
Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality.
no code implementations • 26 Jun 2020 • Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao, Bo Long
Specifically, we first proposed an end-to-end differentiable framework that can calculate the weights over various dimensions for feature fields in a soft and continuous manner with an AutoML based optimization algorithm; then we derive a hard and discrete embedding component architecture according to the maximal weights and retrain the whole recommender framework.
1 code implementation • 17 Jun 2020 • Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, Jiliang Tang
Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data.
no code implementations • 27 May 2020 • Haochen Liu, Zhiwei Wang, Tyler Derr, Jiliang Tang
Recently, neural network based dialogue systems have become ubiquitous in our increasingly digitalized society.
no code implementations • 16 May 2020 • Gale Yan Huang, Jiahao Chen, Haochen Liu, Weiping Fu, Wenbiao Ding, Jiliang Tang, Songfan Yang, Guoliang Li, Zitao Liu
Asking questions is one of the most crucial pedagogical techniques used by teachers in class.
1 code implementation • COLING 2020 • Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao Liu, Jiliang Tang
In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models.
4 code implementations • 17 Sep 2019 • Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, Anil K. Jain
In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i. e., images, graphs and text.
no code implementations • 13 Sep 2019 • Haochen Liu, Tyler Derr, Zitao Liu, Jiliang Tang
Neural dialogue models have been widely adopted in various chatbot applications because of their good performance in simulating and generalizing human conversations.