1 code implementation • 13 Dec 2024 • Zi Yang, Haojin Yang, Soumajit Majumder, Jorge Cardoso, Guillermo Gallego
Previous studies have demonstrated that not each sample in a dataset is of equal importance during training.
no code implementations • 20 Jun 2024 • Weixing Wang, Haojin Yang, Christoph Meinel
Previous studies have shown that demonstrations can significantly help Large Language Models (LLMs ) perform better on the given tasks.
no code implementations • 23 Apr 2024 • Weixing Wang, Haojin Yang, Christoph Meinel, Hasan Yagiz Özkan, Cristian Bermudez Serna, Carmen Mas-Machuca
In recent years, there has been a growing interest in using Machine Learning (ML), especially Deep Learning (DL) to solve Network Intrusion Detection (NID) problems.
no code implementations • 4 Dec 2023 • Ziyun Li, Christoph Meinel, Haojin Yang
Generalized Class Discovery (GCD) plays a pivotal role in discerning both known and unknown categories from unlabeled datasets by harnessing the insights derived from a labeled set comprising recognized classes.
no code implementations • 4 Dec 2023 • Ziyun Li, Ben Dai, Furkan Simsek, Christoph Meinel, Haojin Yang
Therefore, we present a challenging and practical problem, Imbalanced Generalized Category Discovery (ImbaGCD), where the distribution of unlabeled data is imbalanced, with known classes being more frequent than unknown ones.
no code implementations • 13 Sep 2023 • Ting Hu, Christoph Meinel, Haojin Yang
The increasingly Large Language Models (LLMs) demonstrate stronger language understanding and generation capabilities, while the memory demand and computation cost of fine-tuning LLMs on downstream tasks are non-negligible.
1 code implementation • 6 Jun 2023 • Ziyun Li, Jona Otholt, Ben Dai, Di Hu, Christoph Meinel, Haojin Yang
Next, by using the proposed transfer flow, we conduct various empirical experiments with different levels of semantic similarity, yielding that supervised knowledge may hurt NCD performance.
1 code implementation • 3 May 2023 • Furkan Simsek, Brian Pfitzmann, Hendrik Raetz, Jona Otholt, Haojin Yang, Christoph Meinel
In this work, we propose DocLangID, a transfer learning approach to identify the language of unlabeled historical documents.
1 code implementation • 23 Nov 2022 • Nianhui Guo, Joseph Bethge, Christoph Meinel, Haojin Yang
In this work, we revisit the potential of binary neural networks and focus on a compelling but unanswered problem: how can a binary neural network achieve the crucial accuracy level (e. g., 80%) on ILSVRC-2012 ImageNet?
no code implementations • 29 Oct 2022 • Ting Hu, Christoph Meinel, Haojin Yang
We further explore the limit of quantization bit and show that OCS could quantize BERT-Base and BERT-Large to 3-bits and retain 98% and 96% of the performance on the GLUE benchmark accordingly.
no code implementations • 19 Sep 2022 • Ziyun Li, Jona Otholt, Ben Dai, Di Hu, Christoph Meinel, Haojin Yang
Novel class discovery (NCD) aims to infer novel categories in an unlabeled dataset leveraging prior knowledge of a labeled set comprising disjoint but related classes.
no code implementations • 29 Sep 2021 • Nianhui Guo, Joseph Bethge, Haojin Yang, Kai Zhong, Xuefei Ning, Christoph Meinel, Yu Wang
Recent works on Binary Neural Networks (BNNs) have made promising progress in narrowing the accuracy gap of BNNs to their 32-bit counterparts, often based on specialized model designs using additional 32-bit components.
2 code implementations • 14 Jul 2021 • Christian Bartz, Hendrik Raetz, Jona Otholt, Christoph Meinel, Haojin Yang
One of the most pressing problems in the automated analysis of historical documents is the availability of annotated training data.
1 code implementation • 13 Jun 2021 • Nianhui Guo, Joseph Bethge, Haojin Yang, Kai Zhong, Xuefei Ning, Christoph Meinel, Yu Wang
Recent works on Binary Neural Networks (BNNs) have made promising progress in narrowing the accuracy gap of BNNs to their 32-bit counterparts.
no code implementations • 2 Jun 2021 • Ziyun Li, Xinshao Wang, Di Hu, Neil M. Robertson, David A. Clifton, Christoph Meinel, Haojin Yang
Additionally, CMD covers two special cases: zero-knowledge and all knowledge, leading to a unified MKD framework.
1 code implementation • 15 Apr 2021 • Haojin Yang, Zhen Shen, Yucheng Zhao
Deep convolutional neural networks (CNN) have achieved astonishing results in a large variety of applications.
Ranked #950 on
Image Classification
on ImageNet
no code implementations • 22 Mar 2021 • Gonçalo Mordido, Haojin Yang, Christoph Meinel
The analysis of the compression effects in generative adversarial networks (GANs) after training, i. e. without any fine-tuning, remains an unstudied, albeit important, topic with the increasing trend of their computation and memory requirements.
1 code implementation • 21 Oct 2020 • Christian Bartz, Joseph Bethge, Haojin Yang, Christoph Meinel
Generative Adversarial Networks (GANs) have achieved state-of-the-art performance for several image generation and manipulation tasks.
no code implementations • LREC 2020 • Jonathan Sauder, Ting Hu, Xiaoyin Che, Goncalo Mordido, Haojin Yang, Christoph Meinel
Recently, various approaches with Generative Adversarial Nets (GANs) have also been proposed.
1 code implementation • 16 Jan 2020 • Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, Christoph Meinel
However, the binarization of weights and activations leads to feature maps of lower quality and lower capacity and thus a drop in accuracy compared to traditional networks.
no code implementations • 10 Jan 2020 • Gonçalo Mordido, Haojin Yang, Christoph Meinel
We propose to tackle the mode collapse problem in generative adversarial networks (GANs) by using multiple discriminators and assigning a different portion of each minibatch, called microbatch, to each discriminator.
1 code implementation • 19 Nov 2019 • Christian Bartz, Joseph Bethge, Haojin Yang, Christoph Meinel
Most of these methods propose novel building blocks for neural networks.
no code implementations • 19 Jun 2019 • Joseph Bethge, Haojin Yang, Marvin Bornstein, Christoph Meinel
Binary Neural Networks (BNNs) show promising progress in reducing computational and memory costs but suffer from substantial accuracy degradation compared to their real-valued counterparts on large-scale datasets, e. g., ImageNet.
1 code implementation • 5 Dec 2018 • Joseph Bethge, Marvin Bornstein, Adrian Loy, Haojin Yang, Christoph Meinel
In our work, we focus on increasing the performance of binary neural networks without such prior knowledge and a much simpler training strategy.
no code implementations • 22 Nov 2018 • Mina Rezaei, Haojin Yang, Christoph Meinel
We design a new conditional GAN with two components: a generative model and a discriminative model to mitigate imbalanced data problem through selective weighted loss.
1 code implementation • 14 Nov 2018 • Christian Bartz, Haojin Yang, Joseph Bethge, Christoph Meinel
Our student (localizer) is a model that learns to localize an object, the teacher (assessor) assesses the quality of the localization and provides feedback to the student.
1 code implementation • 5 Nov 2018 • Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze
This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.
no code implementations • 9 Oct 2018 • Mina Rezaei, Haojin Yang, Christoph Meinel
We propose a new conditional generative refinement network with three components: a generative, a discriminative, and a refinement network to mitigate unbalanced data problem through ensemble learning.
1 code implementation • 27 Sep 2018 • Joseph Bethge, Haojin Yang, Christian Bartz, Christoph Meinel
In our work, we focus on increasing our understanding of the training process and making it accessible to everyone.
no code implementations • 27 Sep 2018 • Goncalo Mordido, Haojin Yang, Christoph Meinel
We propose to tackle the mode collapse problem in generative adversarial networks (GANs) by using multiple discriminators and assigning a different portion of each minibatch, called microbatch, to each discriminator.
no code implementations • 30 Jul 2018 • Gonçalo Mordido, Haojin Yang, Christoph Meinel
We propose to incorporate adversarial dropout in generative multi-adversarial networks, by omitting or dropping out, the feedback of each discriminator in the framework with some probability at the end of each batch.
2 code implementations • 14 Dec 2017 • Christian Bartz, Haojin Yang, Christoph Meinel
Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task.
no code implementations • AAAI 2017 • Christian Bartz, Haojin Yang, Christoph Meinel
Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task.
Ranked #2 on
Optical Character Recognition (OCR)
on FSNS - Test
no code implementations • WS 2017 • Xiaoyin Che, Nico Ring, Willi Raschkowski, Haojin Yang, Christoph Meinel
In this paper, we propose an alternative evaluating metric for word analogy questions (A to B is as C to D) in word vector evaluation.
no code implementations • 17 Aug 2017 • Mina Rezaei, Konstantin Harmuth, Willi Gierke, Thomas Kellermeier, Martin Fischer, Haojin Yang, Christoph Meinel
In this paper, we propose a novel end-to-end trainable architecture for brain tumor semantic segmentation through conditional adversarial training.
no code implementations • 17 Aug 2017 • Mina Rezaei, Haojin Yang, Christoph Meinel
In this paper, we describe our method for classification of brain magnetic resonance (MR) images into different abnormalities and healthy classes based on the deep neural network.
no code implementations • 17 Aug 2017 • Mina Rezaei, Haojin Yang, Christoph Meinel
Automated brain lesions detection is an important and very challenging clinical diagnostic task because the lesions have different sizes, shapes, contrasts, and locations.
no code implementations • 17 Aug 2017 • Mina Rezaei, Haojin Yang, Christoph Meinel
This report describes my research activities in the Hasso Plattner Institute and summarizes my Ph. D. plan and several novels, end-to-end trainable approaches for analyzing medical images using deep learning algorithm.
1 code implementation • 16 Aug 2017 • Christian Bartz, Tom Herold, Haojin Yang, Christoph Meinel
Language Identification (LID) systems are used to classify the spoken language from a given audio sample and are typically the first step for many spoken language processing tasks, such as Automatic Speech Recognition (ASR) systems.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
3 code implementations • 27 Jul 2017 • Christian Bartz, Haojin Yang, Christoph Meinel
In contrast to most existing works that consist of multiple deep neural networks and several pre-processing steps we propose to use a single deep neural network that learns to detect and recognize text from natural images in a semi-supervised way.
Ranked #5 on
Scene Text Detection
on ICDAR 2013
3 code implementations • 27 May 2017 • Haojin Yang, Martin Fritzsche, Christian Bartz, Christoph Meinel
Binary Neural Networks (BNNs) can drastically reduce memory size and accesses by applying bit-wise operations instead of standard arithmetic operations.
no code implementations • LREC 2016 • Xiaoyin Che, Cheng Wang, Haojin Yang, Christoph Meinel
In this paper we propose an approach to predict punctuation marks for unsegmented speech transcript.
1 code implementation • 4 Apr 2016 • Cheng Wang, Haojin Yang, Christian Bartz, Christoph Meinel
This work presents an end-to-end trainable deep bidirectional LSTM (Long-Short Term Memory) model for image captioning.