no code implementations • Findings (EMNLP) 2021 • Weijia Xu, Yuwei Yin, Shuming Ma, Dongdong Zhang, Haoyang Huang
Multilingual neural machine translation models typically handle one source language at a time.
1 code implementation • 24 May 2023 • Tianyi Tang, Hongyuan Lu, Yuchen Eleanor Jiang, Haoyang Huang, Dongdong Zhang, Wayne Xin Zhao, Furu Wei
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements.
no code implementations • 23 May 2023 • Lan Jiang, Haoyang Huang, Dongdong Zhang, Rui Jiang, Furu Wei
Notably, the analysis demonstrates that our method significantly influences the initial training process, leading to more efficient convergence and superior solutions.
no code implementations • 11 May 2023 • Haoyang Huang, Tianyi Tang, Dongdong Zhang, Wayne Xin Zhao, Ting Song, Yan Xia, Furu Wei
Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages.
no code implementations • 11 May 2023 • Hongyuan Lu, Haoyang Huang, Dongdong Zhang, Haoran Yang, Wai Lam, Furu Wei
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT) even when trained without parallel data.
no code implementations • 17 Jan 2023 • Jian Yang, Yuwei Yin, Shuming Ma, Liqun Yang, Hongcheng Guo, Haoyang Huang, Dongdong Zhang, Yutao Zeng, Zhoujun Li, Furu Wei
Context-aware neural machine translation aims to use the document-level context to improve translation quality.
1 code implementation • 20 Dec 2022 • Jian Yang, Shuming Ma, Li Dong, Shaohan Huang, Haoyang Huang, Yuwei Yin, Dongdong Zhang, Liqun Yang, Furu Wei, Zhoujun Li
Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model.
no code implementations • 15 Dec 2022 • Hongyuan Lu, Haoyang Huang, Shuming Ma, Dongdong Zhang, Wai Lam, Furu Wei
Despite the success of multilingual sequence-to-sequence pre-training, most existing approaches rely on document-level monolingual corpora in many different languages, sentence-level bilingual corpora,\footnote{In this paper, we use `bilingual corpora' to denote parallel corpora with `bilingual translation pairs' in many different language pairs, each consisting of two sentences/documents with the same meaning written in different languages.
Abstractive Text Summarization
Cross-Lingual Abstractive Summarization
+3
no code implementations • 19 Oct 2022 • Hongcheng Guo, Jiaheng Liu, Haoyang Huang, Jian Yang, Zhoujun Li, Dongdong Zhang, Zheng Cui, Furu Wei
To this end, we first propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages.
no code implementations • 28 Sep 2022 • Hongyuan Lu, Haoyang Huang, Shuming Ma, Dongdong Zhang, Furu Wei, Wai Lam
Despite the fact that multilingual agreement (MA) has shown its importance for multilingual neural machine translation (MNMT), current methodologies in the field have two shortages: (i) require parallel data between multiple language pairs, which is not always realistic and (ii) optimize the agreement in an ambiguous direction, which hampers the translation performance.
1 code implementation • 29 Jul 2022 • Jian Yang, Yuwei Yin, Liqun Yang, Shuming Ma, Haoyang Huang, Dongdong Zhang, Furu Wei, Zhoujun Li
Transformer structure, stacked by a sequence of encoder and decoder network layers, achieves significant development in neural machine translation.
no code implementations • 10 Feb 2022 • Minheng Ni, Chenfei Wu, Haoyang Huang, Daxin Jiang, WangMeng Zuo, Nan Duan
Language guided image inpainting aims to fill in the defective regions of an image under the guidance of text while keeping non-defective regions unchanged.
no code implementations • 5 Jan 2022 • Xu Zhang, Jian Yang, Haoyang Huang, Shuming Ma, Dongdong Zhang, Jinlong Li, Furu Wei
Existing document-level neural machine translation (NMT) models have sufficiently explored different context settings to provide guidance for target generation.
no code implementations • WMT (EMNLP) 2021 • Jian Yang, Shuming Ma, Haoyang Huang, Dongdong Zhang, Li Dong, Shaohan Huang, Alexandre Muzio, Saksham Singhal, Hany Hassan Awadalla, Xia Song, Furu Wei
This report describes Microsoft's machine translation systems for the WMT21 shared task on large-scale multilingual machine translation.
1 code implementation • ACL 2021 • Lei Ji, Xianglin Guo, Haoyang Huang, Xilin Chen
Dense video event captioning aims to generate a sequence of descriptive captions for each event in a long untrimmed video.
no code implementations • ACL 2021 • Jian Yang, Yuwei Yin, Shuming Ma, Haoyang Huang, Dongdong Zhang, Zhoujun Li, Furu Wei
Although multilingual neural machine translation (MNMT) enables multiple language translations, the training process is based on independent multilingual objectives.
1 code implementation • NAACL 2022 • Yuchen Eleanor Jiang, Tianyu Liu, Shuming Ma, Dongdong Zhang, Jian Yang, Haoyang Huang, Rico Sennrich, Ryan Cotterell, Mrinmaya Sachan, Ming Zhou
Standard automatic metrics, e. g. BLEU, are not reliable for document-level MT evaluation.
no code implementations • 31 Dec 2020 • Shuming Ma, Jian Yang, Haoyang Huang, Zewen Chi, Li Dong, Dongdong Zhang, Hany Hassan Awadalla, Alexandre Muzio, Akiko Eriguchi, Saksham Singhal, Xia Song, Arul Menezes, Furu Wei
Multilingual machine translation enables a single model to translate between different languages.
1 code implementation • CVPR 2021 • Minheng Ni, Haoyang Huang, Lin Su, Edward Cui, Taroon Bharti, Lijuan Wang, Jianfeng Gao, Dongdong Zhang, Nan Duan
We present M3P, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training.
no code implementations • 3 Mar 2020 • Qiaolin Xia, Haoyang Huang, Nan Duan, Dong-dong Zhang, Lei Ji, Zhifang Sui, Edward Cui, Taroon Bharti, Xin Liu, Ming Zhou
While many BERT-based cross-modal pre-trained models produce excellent results on downstream understanding tasks like image-text retrieval and VQA, they cannot be applied to generation tasks directly.
2 code implementations • 15 Feb 2020 • Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason Li, Taroon Bharti, Ming Zhou
However, most of the existing multimodal models are pre-trained for understanding tasks, leading to a pretrain-finetune discrepancy for generation tasks.
Ranked #1 on
Action Segmentation
on COIN
(using extra training data)
no code implementations • WS 2019 • Bowen Wu, Haoyang Huang, Zongsheng Wang, Qihang Feng, Jingsong Yu, Baoxun Wang
Despite the remarkable progress on Machine Reading Comprehension (MRC) with the help of open-source datasets, recent studies indicate that most of the current MRC systems unfortunately suffer from weak robustness against adversarial samples.
no code implementations • IJCNLP 2019 • Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang, Ming Zhou
On XNLI, 1. 8% averaged accuracy improvement (on 15 languages) is obtained.
Cross-Lingual Natural Language Inference
Cross-Lingual Question Answering
+1