1 code implementation • 31 Jan 2022 • Jayanta Dey, Haoyin Xu, Will LeVine, Ashwin De Silva, Tyler M. Tomita, Ali Geisa, Tiffany Chu, Jacob Desman, Joshua T. Vogelstein
However, these methods are not calibrated for the entire feature space, leading to overconfidence in the case of out-of-distribution (OOD) samples.
2 code implementations • 16 Oct 2021 • Haoyin Xu, Jayanta Dey, Sambit Panda, Joshua T. Vogelstein
In a benchmark suite containing 72 classification problems (the OpenML-CC18 data suite), we illustrate that our approach, Stream Decision Forest (SDF), does not suffer from either of the aforementioned limitations.
no code implementations • 29 Sep 2021 • Jayanta Dey, Ali Geisa, Ronak Mehta, Tyler M. Tomita, Hayden S. Helm, Haoyin Xu, Eric Eaton, Jeffery Dick, Carey E. Priebe, Joshua T. Vogelstein
Establishing proper and universally agreed-upon definitions for these learning setups is essential for thoroughly exploring the evolution of ideas across different learning scenarios and deriving generalized mathematical bounds for these learners.
2 code implementations • 31 Aug 2021 • Haoyin Xu, Kaleab A. Kinfu, Will LeVine, Sambit Panda, Jayanta Dey, Michael Ainsworth, Yu-Chung Peng, Madi Kusmanov, Florian Engert, Christopher M. White, Joshua T. Vogelstein, Carey E. Priebe
Empirically, we compare these two strategies on hundreds of tabular data settings, as well as several vision and auditory settings.
1 code implementation • 27 Apr 2020 • Joshua T. Vogelstein, Jayanta Dey, Hayden S. Helm, Will LeVine, Ronak D. Mehta, Ali Geisa, Haoyin Xu, Gido M. van de Ven, Emily Chang, Chenyu Gao, Weiwei Yang, Bryan Tower, Jonathan Larson, Christopher M. White, Carey E. Priebe
But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data.