1 code implementation • 18 Jun 2024 • Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A. Rupam Mahmood, Doina Precup, Pan Xu
Empirically, we show that in tasks where deep exploration is necessary, our proposed algorithms that combine FGTS and approximate sampling perform significantly better compared to other strong baselines.
no code implementations • 18 Mar 2024 • Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup
We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation.
1 code implementation • 29 May 2023 • Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anandkumar, Kamyar Azizzadenesheli
One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings.
1 code implementation • 15 Jun 2021 • Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, Lin F. Yang
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm as well as the optimism principle.
no code implementations • 5 Nov 2019 • Kshitij Fadnis, Kartik Talamadupula, Pavan Kapanipathi, Haque Ishfaq, Salim Roukos, Achille Fokoue
In this paper, we introduce the problem of knowledge graph contextualization -- that is, given a specific NLP task, the problem of extracting meaningful and relevant sub-graphs from a given knowledge graph.
2 code implementations • 13 Feb 2018 • Haque Ishfaq, Assaf Hoogi, Daniel Rubin
Deep metric learning has been demonstrated to be highly effective in learning semantic representation and encoding information that can be used to measure data similarity, by relying on the embedding learned from metric learning.