Search Results for author: Harald Kosch

Found 5 papers, 0 papers with code

Incremental Scene Synthesis

no code implementations NeurIPS 2019 Benjamin Planche, Xuejian Rong, Ziyan Wu, Srikrishna Karanam, Harald Kosch, YingLi Tian, Jan Ernst, Andreas Hutter

We present a method to incrementally generate complete 2D or 3D scenes with the following properties: (a) it is globally consistent at each step according to a learned scene prior, (b) real observations of a scene can be incorporated while observing global consistency, (c) unobserved regions can be hallucinated locally in consistence with previous observations, hallucinations and global priors, and (d) hallucinations are statistical in nature, i. e., different scenes can be generated from the same observations.

Autonomous Navigation

Seeing Beyond Appearance - Mapping Real Images into Geometrical Domains for Unsupervised CAD-based Recognition

no code implementations9 Oct 2018 Benjamin Planche, Sergey Zakharov, Ziyan Wu, Andreas Hutter, Harald Kosch, Slobodan Ilic

Applying our approach to object recognition from texture-less CAD data, we present a custom generative network which fully utilizes the purely geometrical information to learn robust features and achieve a more refined mapping for unseen color images.

Denoising Domain Adaptation +1

Keep it Unreal: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only

no code implementations24 Apr 2018 Sergey Zakharov, Benjamin Planche, Ziyan Wu, Andreas Hutter, Harald Kosch, Slobodan Ilic

With the increasing availability of large databases of 3D CAD models, depth-based recognition methods can be trained on an uncountable number of synthetically rendered images.

Cannot find the paper you are looking for? You can Submit a new open access paper.