Search Results for author: Hardik Uppal

Found 3 papers, 3 papers with code

Teacher-Student Adversarial Depth Hallucination to Improve Face Recognition

1 code implementation ICCV 2021 Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Moreover, face recognition experiments demonstrate that our hallucinated depth along with the input RGB images boosts performance across various architectures when compared to a single RGB modality by average values of +1. 2%, +2. 6%, and +2. 6% for IIIT-D, EURECOM, and LFW datasets respectively.

Face Recognition

Depth as Attention for Face Representation Learning

1 code implementation3 Jan 2021 Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Our novel attention mechanism directs the deep network "where to look" for visual features in the RGB image by focusing the attention of the network using depth features extracted by a Convolution Neural Network (CNN).

Face Recognition Representation Learning

Two-Level Attention-based Fusion Learning for RGB-D Face Recognition

1 code implementation29 Feb 2020 Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

A novel attention aware method is proposed to fuse two image modalities, RGB and depth, for enhanced RGB-D facial recognition.

Face Recognition Transfer Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.