1 code implementation • EMNLP (ArgMining) 2021 • Aris Fergadis, Dimitris Pappas, Antonia Karamolegkou, Haris Papageorgiou
We also present a set of strong, BERT-based neural baselines achieving an f1-score of 70. 0 for Claim and 62. 4 for Evidence identification evaluated with 10-fold cross-validation.
no code implementations • 2 Apr 2022 • Nikolaos Gialitsis, Sotiris Kotitsas, Haris Papageorgiou
Classifying scientific publications according to Field-of-Science (FoS) taxonomies is of crucial importance, allowing funders, publishers, scholars, companies and other stakeholders to organize scientific literature more effectively.
no code implementations • LREC 2020 • Konstantina Papanikolaou, Haris Papageorgiou
More specifically, the contribution of this work is to describe a Computational Social Science methodology for Event Analysis.
no code implementations • SEMEVAL 2017 • Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias Iosif, Mal, Nikolaos rakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth Narayanan, Alex Potamianos, ros
In this paper, we describe our submission to SemEval2017 Task 4: Sentiment Analysis in Twitter.
no code implementations • SEMEVAL 2016 • Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Man, Suresh har, Mohammad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orph{\'e}e De Clercq, V{\'e}ronique Hoste, Marianna Apidianaki, Xavier Tannier, Natalia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel, Salud Mar{\'\i}a Jim{\'e}nez-Zafra, G{\"u}l{\c{s}}en Eryi{\u{g}}it
Aspect-Based Sentiment Analysis Aspect-Based Sentiment Analysis (ABSA) +2
no code implementations • SEMEVAL 2016 • Elisavet Palogiannidi, Athanasia Kolovou, Fenia Christopoulou, Filippos Kokkinos, Elias Iosif, Mal, Nikolaos rakis, Haris Papageorgiou, Shrikanth Narayanan, Alex Potamianos, ros
no code implementations • 17 Jan 2014 • Maria Kalimeri, Vassilios Constantoudis, Constantinos Papadimitriou, Kostantinos Karamanos, Fotis K. Diakonos, Haris Papageorgiou
We estimate the $n$-gram entropies of natural language texts in word-length representation and find that these are sensitive to text language and genre.
no code implementations • LREC 2012 • Maria Gavrilidou, Penny Labropoulou, Elina Desipri, Stelios Piperidis, Haris Papageorgiou, Monica Monachini, Francesca Frontini, Thierry Declerck, Gil Francopoulo, Victoria Arranz, Valerie Mapelli
This paper presents a metadata model for the description of language resources proposed in the framework of the META-SHARE infrastructure, aiming to cover both datasets and tools/technologies used for their processing.