no code implementations • 19 Sep 2024 • Mine Öğretir, Miika Koskinen, Juha Sinisalo, Risto Renkonen, Harri Lähdesmäki
In healthcare, risk assessment of different patient outcomes has for long time been based on survival analysis, i. e.\ modeling time-to-event associations.
no code implementations • 17 Sep 2024 • Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki
Modelling longitudinal data is an important yet challenging task.
no code implementations • 1 Jun 2024 • Valerii Iakovlev, Harri Lähdesmäki
Spatiotemporal processes are a fundamental tool for modeling dynamics across various domains, from heat propagation in materials to oceanic and atmospheric flows.
no code implementations • 24 Feb 2024 • Alexandru Dumitrescu, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas Garg, Harri Lähdesmäki
This work introduces FMG, a field-based model for drug-like molecule generation.
1 code implementation • 8 Feb 2024 • Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki
Longitudinal data are important in numerous fields, such as healthcare, sociology and seismology, but real-world datasets present notable challenges for practitioners because they can be high-dimensional, contain structured missingness patterns, and measurement time points can be governed by an unknown stochastic process.
1 code implementation • 6 Nov 2023 • Manuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi V. Leinonen, Miika Koskinen, Samuel Kaski, Harri Lähdesmäki
Compared to previous methods, our results show improved performance both for direct treatment effect estimation as well as for effect estimation via patient matching.
1 code implementation • 9 Jul 2023 • Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki
We introduce a novel grid-independent model for learning partial differential equations (PDEs) from noisy and partial observations on irregular spatiotemporal grids.
1 code implementation • 7 Oct 2022 • Valerii Iakovlev, Cagatay Yildiz, Markus Heinonen, Harri Lähdesmäki
Training dynamic models, such as neural ODEs, on long trajectories is a hard problem that requires using various tricks, such as trajectory splitting, to make model training work in practice.
1 code implementation • 20 Apr 2022 • Mine Öğretir, Siddharth Ramchandran, Dimitrios Papatheodorou, Harri Lähdesmäki
In this work, we propose the heterogeneous longitudinal VAE (HL-VAE) that extends the existing temporal and longitudinal VAEs to heterogeneous data.
no code implementations • 2 Mar 2022 • Siddharth Ramchandran, Gleb Tikhonov, Otto Lönnroth, Pekka Tiikkainen, Harri Lähdesmäki
Conditional variational autoencoders (CVAEs) are versatile deep generative models that extend the standard VAE framework by conditioning the generative model with auxiliary covariates.
2 code implementations • 3 Nov 2021 • Juho Timonen, Harri Lähdesmäki
Gaussian process (GP) models that combine both categorical and continuous input variables have found use in longitudinal data analysis of and computer experiments.
no code implementations • 29 Sep 2021 • Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki
Data-driven neural network models have recently shown great success in modelling and learning complex PDE systems.
1 code implementation • 21 Jun 2021 • Pashupati Hegde, Çağatay Yıldız, Harri Lähdesmäki, Samuel Kaski, Markus Heinonen
Recent machine learning advances have proposed black-box estimation of unknown continuous-time system dynamics directly from data.
1 code implementation • 9 Feb 2021 • Çağatay Yıldız, Markus Heinonen, Harri Lähdesmäki
Model-based reinforcement learning (MBRL) approaches rely on discrete-time state transition models whereas physical systems and the vast majority of control tasks operate in continuous-time.
Model-based Reinforcement Learning reinforcement-learning +2
no code implementations • 1 Jan 2021 • James Morton, Justin Silverman, Gleb Tikhonov, Harri Lähdesmäki, Rich Bonneau
Covariance estimation on high dimensional data is a central challenge across multiple scientific disciplines.
no code implementations • 2 Nov 2020 • Charles Gadd, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski
In model-based reinforcement learning efficiency is improved by learning to simulate the world dynamics.
no code implementations • 17 Jun 2020 • Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, Harri Lähdesmäki
Longitudinal datasets measured repeatedly over time from individual subjects, arise in many biomedical, psychological, social, and other studies.
1 code implementation • ICLR 2021 • Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki
We demonstrate the model's ability to work with unstructured grids, arbitrary time steps, and noisy observations.
1 code implementation • 7 Dec 2019 • Juho Timonen, Henrik Mannerström, Aki Vehtari, Harri Lähdesmäki
The lgpr tool is implemented as a comprehensive and user-friendly R-package.
no code implementations • 4 Sep 2019 • Siddharth Ramchandran, Miika Koskinen, Harri Lähdesmäki
Clinical patient records are an example of high-dimensional data that is typically collected from disparate sources and comprises of multiple likelihoods with noisy as well as missing values.
1 code implementation • 27 May 2019 • Çağatay Yıldız, Markus Heinonen, Harri Lähdesmäki
We present Ordinary Differential Equation Variational Auto-Encoder (ODE$^2$VAE), a latent second order ODE model for high-dimensional sequential data.
Ranked #1 on Video Prediction on CMU Mocap-1
1 code implementation • 9 Oct 2018 • Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski
We propose a novel deep learning paradigm of differential flows that learn a stochastic differential equation transformations of inputs prior to a standard classification or regression function.
1 code implementation • 16 Jul 2018 • Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerström, Harri Lähdesmäki
We introduce a novel paradigm for learning non-parametric drift and diffusion functions for stochastic differential equation (SDE).
1 code implementation • 18 Apr 2018 • Markus Heinonen, Maria Osmala, Henrik Mannerström, Janne Wallenius, Samuel Kaski, Juho Rousu, Harri Lähdesmäki
Flux analysis methods commonly place unrealistic assumptions on fluxes due to the convenience of formulating the problem as a linear programming model, and most methods ignore the notable uncertainty in flux estimates.
2 code implementations • ICML 2018 • Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, Harri Lähdesmäki
In conventional ODE modelling coefficients of an equation driving the system state forward in time are estimated.
1 code implementation • 8 Feb 2018 • Emmi Jokinen, Markus Heinonen, Harri Lähdesmäki
We introduce a Bayesian data fusion model that re-calibrates the experimental and in silico data sources and then learns a predictive GP model from the combined data.
1 code implementation • 18 Aug 2015 • Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki
We present a novel approach for fully non-stationary Gaussian process regression (GPR), where all three key parameters -- noise variance, signal variance and lengthscale -- can be simultaneously input-dependent.