2 code implementations • LREC 2022 • Harshita Sharma, Pruthwik Mishra, Dipti Sharma
Recently there has been a surge in this area of word problem solving in Chinese with the creation of large benchmark datastes.
1 code implementation • 6 Jun 2024 • Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton Schwaighofer, Sam Bond-Taylor, Maximilian Ilse, Fernando Pérez-García, Valentina Salvatelli, Harshita Sharma, Felix Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Fabian Falck, Ozan Oktay, Anja Thieme, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarez-Valle, Stephanie L. Hyland
Radiology reporting is a complex task that requires detailed image understanding, integration of multiple inputs, including comparison with prior imaging, and precise language generation.
no code implementations • 8 May 2024 • Anja Thieme, Abhijith Rajamohan, Benjamin Cooper, Heather Groombridge, Robert Simister, Barney Wong, Nicholas Woznitza, Mark Ames Pinnock, Maria Teodora Wetscherek, Cecily Morrison, Hannah Richardson, Fernando Pérez-García, Stephanie L. Hyland, Shruthi Bannur, Daniel C. Castro, Kenza Bouzid, Anton Schwaighofer, Mercy Ranjit, Harshita Sharma, Matthew P. Lungren, Ozan Oktay, Javier Alvarez-Valle, Aditya Nori, Stephen Harris, Joseph Jacob
Nasogastric tubes (NGTs) are feeding tubes that are inserted through the nose into the stomach to deliver nutrition or medication.
no code implementations • 19 Jan 2024 • Fernando Pérez-García, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli, Maximilian Ilse, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Matthew P. Lungren, Maria Wetscherek, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, Ozan Oktay
We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data that obtains similar or greater performance than state-of-the-art biomedical language supervised models on a diverse range of benchmarks.
no code implementations • 20 Dec 2023 • Fernando Pérez-García, Sam Bond-Taylor, Pedro P. Sanchez, Boris van Breugel, Daniel C. Castro, Harshita Sharma, Valentina Salvatelli, Maria T. A. Wetscherek, Hannah Richardson, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay, Maximilian Ilse
Biomedical imaging datasets are often small and biased, meaning that real-world performance of predictive models can be substantially lower than expected from internal testing.
1 code implementation • 18 Dec 2023 • Harshita Sharma, Pruthwik Mishra, Dipti Misra Sharma
Verbs are very important for solving word problems with addition/subtraction operations as they help us identify the set of operations required to solve the word problems.
no code implementations • 23 Oct 2023 • Qianchu Liu, Stephanie Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Maria Teodora Wetscherek, Robert Tinn, Harshita Sharma, Fernando Pérez-García, Anton Schwaighofer, Pranav Rajpurkar, Sameer Tajdin Khanna, Hoifung Poon, Naoto Usuyama, Anja Thieme, Aditya V. Nori, Matthew P. Lungren, Ozan Oktay, Javier Alvarez-Valle
In this paper, we focus on assessing the performance of GPT-4, the most capable LLM so far, on the text-based applications for radiology reports, comparing against state-of-the-art (SOTA) radiology-specific models.
no code implementations • CVPR 2023 • Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay
Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images.
no code implementations • 22 Jan 2020 • Richard Droste, Pierre Chatelain, Lior Drukker, Harshita Sharma, Aris T. Papageorghiou, J. Alison Noble
In this paper, in contrast, we present a method to automatically discover and localize anatomical landmarks in medical images.
no code implementations • 7 Mar 2019 • Richard Droste, Yifan Cai, Harshita Sharma, Pierre Chatelain, Lior Drukker, Aris T. Papageorghiou, J. Alison Noble
Secondly, we train a simple softmax regression on the feature activations of each CNN layer in order to evaluate the representations independently of transfer learning hyper-parameters.