You need to log in to edit.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

no code implementations • 17 May 2022 • Oliver T. Unke, Martin Stöhr, Stefan Ganscha, Thomas Unterthiner, Hartmut Maennel, Sergii Kashubin, Daniel Ahlin, Michael Gastegger, Leonardo Medrano Sandonas, Alexandre Tkatchenko, Klaus-Robert Müller

Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.

no code implementations • 1 Sep 2021 • Ibrahim Alabdulmohsin, Hartmut Maennel, Daniel Keysers

Recent results suggest that reinitializing a subset of the parameters of a neural network during training can improve generalization, particularly for small training sets.

1 code implementation • NeurIPS 2021 • Robert J. N. Baldock, Hartmut Maennel, Behnam Neyshabur

Existing work on understanding deep learning often employs measures that compress all data-dependent information into a few numbers.

no code implementations • NeurIPS 2020 • Hartmut Maennel, Ibrahim Alabdulmohsin, Ilya Tolstikhin, Robert J. N. Baldock, Olivier Bousquet, Sylvain Gelly, Daniel Keysers

We show how this alignment produces a positive transfer: networks pre-trained with random labels train faster downstream compared to training from scratch even after accounting for simple effects, such as weight scaling.

no code implementations • 31 Mar 2020 • Hartmut Maennel

We generalize this algorithm to the case of sparse probabilities $\beta(w|z)$, in which we only need to assume that the tree width of an "interaction graph" on the observations is limited.

no code implementations • 25 Sep 2019 • Hartmut Maennel, Alexandru Țifrea

A simple method for obtaining uncertainty estimates for Neural Network classifiers (e. g. for out-of-distribution detection) is to use an ensemble of independently trained networks and average the softmax outputs.

no code implementations • NeurIPS 2019 • Hugo Penedones, Carlos Riquelme, Damien Vincent, Hartmut Maennel, Timothy Mann, Andre Barreto, Sylvain Gelly, Gergely Neu

We consider the core reinforcement-learning problem of on-policy value function approximation from a batch of trajectory data, and focus on various issues of Temporal Difference (TD) learning and Monte Carlo (MC) policy evaluation.

no code implementations • 9 Jul 2018 • Hugo Penedones, Damien Vincent, Hartmut Maennel, Sylvain Gelly, Timothy Mann, Andre Barreto

Temporal-Difference learning (TD) [Sutton, 1988] with function approximation can converge to solutions that are worse than those obtained by Monte-Carlo regression, even in the simple case of on-policy evaluation.

no code implementations • 22 Mar 2018 • Hartmut Maennel, Olivier Bousquet, Sylvain Gelly

Deep neural networks are often trained in the over-parametrized regime (i. e. with far more parameters than training examples), and understanding why the training converges to solutions that generalize remains an open problem.

Cannot find the paper you are looking for? You can
Submit a new open access paper.

Contact us on:
hello@paperswithcode.com
.
Papers With Code is a free resource with all data licensed under CC-BY-SA.