no code implementations • 25 Sep 2024 • Aranyak Acharyya, Michael W. Trosset, Carey E. Priebe, Hayden S. Helm
Generative models, such as large language models and text-to-image diffusion models, produce relevant information when presented a query.
no code implementations • 9 May 2023 • Brandon Duderstadt, Hayden S. Helm, Carey E. Priebe
Further, we demonstrate how our methodology can be extended to facilitate population level model comparison.
no code implementations • 27 Feb 2023 • Hayden S. Helm, Ashwin De Silva, Joshua T. Vogelstein, Carey E. Priebe, Weiwei Yang
We propose a class of models based on Fisher's Linear Discriminant (FLD) in the context of domain adaptation.
no code implementations • 28 May 2022 • Li Chen, Ningyuan Huang, Cong Mu, Hayden S. Helm, Kate Lytvynets, Weiwei Yang, Carey E. Priebe
Our hierarchical approach improves upon regular deep neural networks in learning with label noise.
no code implementations • 25 Feb 2022 • Guodong Chen, Hayden S. Helm, Kate Lytvynets, Weiwei Yang, Carey E. Priebe
We consider the problem of extracting features from passive, multi-channel electroencephalogram (EEG) devices for downstream inference tasks related to high-level mental states such as stress and cognitive load.
no code implementations • 29 Sep 2021 • Jayanta Dey, Ali Geisa, Ronak Mehta, Tyler M. Tomita, Hayden S. Helm, Haoyin Xu, Eric Eaton, Jeffery Dick, Carey E. Priebe, Joshua T. Vogelstein
Establishing proper and universally agreed-upon definitions for these learning setups is essential for thoroughly exploring the evolution of ideas across different learning scenarios and deriving generalized mathematical bounds for these learners.
no code implementations • 23 Jun 2021 • Hayden S. Helm, Marah Abdin, Benjamin D. Pedigo, Shweti Mahajan, Vince Lyzinski, Youngser Park, Amitabh Basu, Piali~Choudhury, Christopher M. White, Weiwei Yang, Carey E. Priebe
In modern ranking problems, different and disparate representations of the items to be ranked are often available.
no code implementations • 20 Feb 2021 • Hayden S. Helm, Weiwei Yang, Sujeeth Bharadwaj, Kate Lytvynets, Oriana Riva, Christopher White, Ali Geisa, Carey E. Priebe
In applications where categorical labels follow a natural hierarchy, classification methods that exploit the label structure often outperform those that do not.
no code implementations • 29 Jan 2021 • Al-Fahad M. Al-Qadhi, Carey E. Priebe, Hayden S. Helm, Vince Lyzinski
This paper introduces the subgraph nomination inference task, in which example subgraphs of interest are used to query a network for similarly interesting subgraphs.
no code implementations • 12 Nov 2020 • Hayden S. Helm, Ronak D. Mehta, Brandon Duderstadt, Weiwei Yang, Christoper M. White, Ali Geisa, Joshua T. Vogelstein, Carey E. Priebe
Herein we define a measure of similarity between classification distributions that is both principled from the perspective of statistical pattern recognition and useful from the perspective of machine learning practitioners.
2 code implementations • 20 May 2020 • Hayden S. Helm, Amitabh Basu, Avanti Athreya, Youngser Park, Joshua T. Vogelstein, Carey E. Priebe, Michael Winding, Marta Zlatic, Albert Cardona, Patrick Bourke, Jonathan Larson, Marah Abdin, Piali Choudhury, Weiwei Yang, Christopher W. White
Learning to rank -- producing a ranked list of items specific to a query and with respect to a set of supervisory items -- is a problem of general interest.
1 code implementation • 27 Apr 2020 • Joshua T. Vogelstein, Jayanta Dey, Hayden S. Helm, Will LeVine, Ronak D. Mehta, Ali Geisa, Haoyin Xu, Gido M. van de Ven, Emily Chang, Chenyu Gao, Weiwei Yang, Bryan Tower, Jonathan Larson, Christopher M. White, Carey E. Priebe
But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data.
2 code implementations • 29 Mar 2019 • Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm, Joshua T. Vogelstein
We introduce GraSPy, a Python library devoted to statistical inference, machine learning, and visualization of random graphs and graph populations.