Search Results for author: Helan Hu

Found 6 papers, 3 papers with code

Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging

1 code implementation20 May 2024 Xiaobo Liang, Haoke Zhang, Helan Hu, Juntao Li, Jun Xu, Min Zhang

The rapid advancement of large language models has given rise to a plethora of applications across a myriad of real-world tasks, mainly centered on aligning with human intent.

Language Modelling

PromptCoT: Align Prompt Distribution via Adapted Chain-of-Thought

no code implementations CVPR 2024 Junyi Yao, Yijiang Liu, Zhen Dong, Mingfei Guo, Helan Hu, Kurt Keutzer, Li Du, Daquan Zhou, Shanghang Zhang

Considering computational efficiency instead of allocating a dedicated LLM for prompt enhancement to each individual model or dataset we integrate adapters that facilitate dataset-specific adaptation leveraging a shared pre-trained LLM as the foundation for this process.

Computational Efficiency Prompt Engineering +1

ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code

1 code implementation16 Nov 2023 Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, Mark Gerstein

Despite Large Language Models (LLMs) like GPT-4 achieving impressive results in function-level code generation, they struggle with repository-scale code understanding (e. g., coming up with the right arguments for calling routines), requiring a deeper comprehension of complex file interactions.

Code Generation Navigate +1

Cannot find the paper you are looking for? You can Submit a new open access paper.