no code implementations • COLING 2022 • Revanth Gangi Reddy, Sai Chetan Chinthakindi, Yi R. Fung, Kevin Small, Heng Ji
In recent years, there has been an increasing interest in claim detection as an important building block for misinformation detection.
1 code implementation • EMNLP (ACL) 2021 • Wenhao Yu, Meng Jiang, Zhiting Hu, Qingyun Wang, Heng Ji, Nazneen Rajani
Knowledge-enriched text generation poses unique challenges in modeling and learning, driving active research in several core directions, ranging from integrated modeling of neural representations and symbolic information in the sequential/hierarchical/graphical structures, learning without direct supervisions due to the cost of structured annotation, efficient optimization and inference with massive and global constraints, to language grounding on multiple modalities, and generative reasoning with implicit commonsense knowledge and background knowledge.
1 code implementation • Findings (NAACL) 2022 • Qi Zeng, Qiusi Zhan, Heng Ji
Events are inter-related in documents.
1 code implementation • NAACL 2022 • Xueqing Wu, Kung-Hsiang Huang, Yi Fung, Heng Ji
Inspired by this process, we propose a novel task of cross-document misinformation detection.
no code implementations • NAACL 2022 • Xiaomeng Jin, Manling Li, Heng Ji
To induce event schemas from historical events, previous work uses an event-by-event scheme, ignoring the global structure of the entire schema graph.
no code implementations • NAACL 2022 • Sha Li, Mahdi Namazifar, Di Jin, Mohit Bansal, Heng Ji, Yang Liu, Dilek Hakkani-Tur
In this work, we propose to automatically convert the background knowledge documents into document semantic graphs and then perform knowledge selection over such graphs.
1 code implementation • NAACL (ACL) 2022 • Xinya Du, Zixuan Zhang, Sha Li, Pengfei Yu, Hongwei Wang, Tuan Lai, Xudong Lin, Ziqi Wang, Iris Liu, Ben Zhou, Haoyang Wen, Manling Li, Darryl Hannan, Jie Lei, Hyounghun Kim, Rotem Dror, Haoyu Wang, Michael Regan, Qi Zeng, Qing Lyu, Charles Yu, Carl Edwards, Xiaomeng Jin, Yizhu Jiao, Ghazaleh Kazeminejad, Zhenhailong Wang, Chris Callison-Burch, Mohit Bansal, Carl Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang, Martha Palmer, Heng Ji
We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios.
no code implementations • NAACL (ACL) 2022 • Muhao Chen, Lifu Huang, Manling Li, Ben Zhou, Heng Ji, Dan Roth
This tutorial targets researchers and practitioners who are interested in AI and ML technologies for structural information extraction (IE) from unstructured textual sources.
no code implementations • COLING 2022 • Revanth Gangi Reddy, Vikas Yadav, Md Arafat Sultan, Martin Franz, Vittorio Castelli, Heng Ji, Avirup Sil
Research on neural IR has so far been focused primarily on standard supervised learning settings, where it outperforms traditional term matching baselines.
1 code implementation • NAACL (TextGraphs) 2021 • Qi Zeng, Manling Li, Tuan Lai, Heng Ji, Mohit Bansal, Hanghang Tong
Current methods for event representation ignore related events in a corpus-level global context.
no code implementations • CRAC (ACL) 2021 • Liming Wang, Shengyu Feng, Xudong Lin, Manling Li, Heng Ji, Shih-Fu Chang
Event coreference resolution is critical to understand events in the growing number of online news with multiple modalities including text, video, speech, etc.
1 code implementation • EMNLP 2021 • Haoyang Wen, Heng Ji
Event time is one of the most important features for event-event temporal relation extraction.
1 code implementation • EMNLP 2021 • Manling Li, Tengfei Ma, Mo Yu, Lingfei Wu, Tian Gao, Heng Ji, Kathleen McKeown
Timeline Summarization identifies major events from a news collection and describes them following temporal order, with key dates tagged.
1 code implementation • EMNLP 2021 • Pengfei Yu, Heng Ji, Prem Natarajan
We focus on lifelong event detection as an exemplar case and propose a new problem formulation that is also generalizable to other IE tasks.
1 code implementation • EMNLP 2021 • Carl Edwards, ChengXiang Zhai, Heng Ji
Moreover, this can be viewed as an especially challenging cross-lingual retrieval problem by considering the molecules as a language with a very unique grammar.
Ranked #1 on
Cross-Modal Retrieval
on ChEBI-20
no code implementations • Findings (EMNLP) 2021 • Zixuan Zhang, Hongwei Wang, Han Zhao, Hanghang Tong, Heng Ji
Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities.
no code implementations • ACL (ECNLP) 2021 • Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang Liu, Premkumar Natarajan
We first build a cross-source heterogeneous knowledge graph from customer purchase history and product knowledge graph to jointly learn customer and product embeddings.
1 code implementation • ACL 2022 • Manling Li, Revanth Gangi Reddy, Ziqi Wang, Yi-shyuan Chiang, Tuan Lai, Pengfei Yu, Zixuan Zhang, Heng Ji
To tackle the challenge of accurate and timely communication regarding the COVID-19 pandemic, we present a COVID-19 Claim Radar to automatically extract supporting and refuting claims on a daily basis.
no code implementations • EMNLP 2020 • Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May, Nathanael Chambers, Clare Voss
Event schemas can guide our understanding and ability to make predictions with respect to what might happen next.
no code implementations • EMNLP 2020 • Lifu Huang, Heng Ji
We design a Semi-Supervised Vector Quantized Variational Autoencoder framework to automatically learn a discrete latent type representation for each seen and unseen type and optimize them using seen type event annotations.
1 code implementation • 1 Jun 2023 • Xueqing Wu, Sha Li, Heng Ji
Open-vocabulary state tracking is a more practical version of state tracking that aims to track state changes of entities throughout a process without restricting the state space and entity space.
1 code implementation • 29 May 2023 • Yangyi Chen, Hongcheng Gao, Ganqu Cui, Lifan Yuan, Dehan Kong, Hanlu Wu, Ning Shi, Bo Yuan, Longtao Huang, Hui Xue, Zhiyuan Liu, Maosong Sun, Heng Ji
In our experiments, we conduct a robustness evaluation of RoBERTa models to demonstrate the effectiveness of our evaluation framework, and further show the rationality of each component in the framework.
no code implementations • 29 May 2023 • Mingyang Zhou, Yi R. Fung, Long Chen, Christopher Thomas, Heng Ji, Shih-Fu Chang
Building cross-model intelligence that can understand charts and communicate the salient information hidden behind them is an appealing challenge in the vision and language(V+L) community.
no code implementations • 29 May 2023 • Pengfei Yu, Heng Ji
For instance, we can use the latest news articles to update the LLMs' existing knowledge.
no code implementations • 27 May 2023 • Zhenrui Yue, Huimin Zeng, Mengfei Lan, Heng Ji, Dong Wang
With emerging online topics as a source for numerous new events, detecting unseen / rare event types presents an elusive challenge for existing event detection methods, where only limited data access is provided for training.
1 code implementation • 27 May 2023 • Yu Zhou, Sha Li, Manling Li, Xudong Lin, Shih-Fu Chang, Mohit Bansal, Heng Ji
To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks.
no code implementations • 25 May 2023 • Chenkai Sun, Jinning Li, Hou Pong Chan, ChengXiang Zhai, Heng Ji
Our analysis shows that the best-performing models are capable of predicting responses that are consistent with the personas, and as a byproduct, the task formulation also enables many interesting applications in the analysis of social network groups and their opinions, such as the discovery of extreme opinion groups.
1 code implementation • 24 May 2023 • Qi Zeng, Mankeerat Sidhu, Hou Pong Chan, Lu Wang, Heng Ji
Opinions in the scientific domain can be divergent, leading to controversy or consensus among reviewers.
no code implementations • 23 May 2023 • Cheng Qian, Chi Han, Yi R. Fung, Yujia Qin, Zhiyuan Liu, Heng Ji
Large Language Models (LLMs) have demonstrated significant progress in utilizing external APIs as tools for various tasks.
1 code implementation • 23 May 2023 • Qingyun Wang, Doug Downey, Heng Ji, Tom Hope
Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses.
1 code implementation • 23 May 2023 • Hou Pong Chan, Qi Zeng, Heng Ji
Motivated by how humans inspect factual inconsistency in summaries, we propose an interpretable fine-grained inconsistency detection model, FineGrainFact, which explicitly represents the facts in the documents and summaries with semantic frames extracted by semantic role labeling, and highlights the related semantic frames to predict inconsistency.
no code implementations • 23 May 2023 • Kung-Hsiang Huang, Hou Pong Chan, Kathleen McKeown, Heng Ji
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
no code implementations • 22 May 2023 • Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, Heng Ji
As pre-training and fine-tuning are costly and might negatively impact model performance, it is desired to efficiently adapt an existing model to different conditions such as styles, sentiments or narratives, when facing different audiences or scenarios.
no code implementations • 22 May 2023 • Chi Han, Ziqi Wang, Han Zhao, Heng Ji
In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training on a general language corpus by proposing one hypothesis that LLMs can simulate kernel regression algorithms when faced with in-context examples.
1 code implementation • 22 May 2023 • Chi Han, Qizheng He, Charles Yu, Xinya Du, Hanghang Tong, Heng Ji
A LERP is designed as a vector of probabilistic logical functions on the entity's neighboring sub-graph.
no code implementations • 21 May 2023 • Ziqi Wang, Chi Han, Wenxuan Bao, Heng Ji
However, such data augmentation methods are sub-optimal for knowledge distillation since the teacher model could provide label distributions and is more tolerant to semantic shifts.
no code implementations • 19 May 2023 • Revanth Gangi Reddy, Pradeep Dasigi, Md Arafat Sultan, Arman Cohan, Avirup Sil, Heng Ji, Hannaneh Hajishirzi
Neural information retrieval often adopts a retrieve-and-rerank framework: a bi-encoder network first retrieves K (e. g., 100) candidates that are then re-ranked using a more powerful cross-encoder model to rank the better candidates higher.
no code implementations • 19 May 2023 • Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, Heng Ji
To detect factual inconsistency, RCoT first asks LLMs to reconstruct the problem based on generated solutions.
1 code implementation • 18 May 2023 • Zhenhailong Wang, Ansel Blume, Sha Li, Genglin Liu, Jaemin Cho, Zineng Tang, Mohit Bansal, Heng Ji
The Paxion framework utilizes a Knowledge Patcher network to encode new action knowledge and a Knowledge Fuser component to integrate the Patcher into frozen VidLMs without compromising their existing capabilities.
1 code implementation • 17 May 2023 • Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
LeTI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback, which is only provided when the generated program fails to solve the task.
1 code implementation • 13 May 2023 • Kung-Hsiang Huang, Hou Pong Chan, Heng Ji
Faithfully correcting factual errors is critical for maintaining the integrity of textual knowledge bases and preventing hallucinations in sequence-to-sequence models.
2 code implementations • 17 Apr 2023 • Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, Maosong Sun
Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 17 representative tools and show the potential of current foundation models in skillfully utilizing tools.
1 code implementation • 25 Mar 2023 • Revanth Gangi Reddy, Yi R. Fung, Qi Zeng, Manling Li, Ziqi Wang, Paul Sullivan, Heng Ji
Further, experiments show that expert analysts tend to add more information into the SmartBook reports, with only 2. 3% of the existing tokens being deleted, meaning SmartBook can serve as a useful foundation for analysts to build upon when creating intelligence reports.
no code implementations • 16 Mar 2023 • Qiusi Zhan, Sha Li, Kathryn Conger, Martha Palmer, Heng Ji, Jiawei Han
The development of event extraction systems has been hindered by the absence of wide-coverage, large-scale datasets.
no code implementations • 25 Feb 2023 • Tianyi Zhang, Isaac Tham, Zhaoyi Hou, Jiaxuan Ren, Liyang Zhou, Hainiu Xu, Li Zhang, Lara J. Martin, Rotem Dror, Sha Li, Heng Ji, Martha Palmer, Susan Brown, Reece Suchocki, Chris Callison-Burch
Schema induction builds a graph representation explaining how events unfold in a scenario.
no code implementations • 22 Jan 2023 • Tuan Manh Lai, Heng Ji
Leveraging the idea that the coreferential links naturally exist between anchor texts pointing to the same article, our method builds a sizeable distantly-supervised dataset for the target language that consists of tens of thousands of documents.
1 code implementation • 2 Dec 2022 • Revanth Gangi Reddy, Heba Elfardy, Hou Pong Chan, Kevin Small, Heng Ji
A primary objective of news articles is to establish the factual record for an event, frequently achieved by conveying both the details of the specified event (i. e., the 5 Ws; Who, What, Where, When and Why regarding the event) and how people reacted to it (i. e., reported statements).
1 code implementation • 30 Nov 2022 • Sha Li, Heng Ji, Jiawei Han
To tackle this problem, we introduce the idea of type abstraction, where the model is prompted to generalize and name the type.
1 code implementation • 14 Nov 2022 • Xinya Du, Heng Ji
We propose a retrieval-augmented generative QA model (R-GQA) for event argument extraction.
1 code implementation • 10 Nov 2022 • Ke Yang, Charles Yu, Yi Fung, Manling Li, Heng Ji
Despite this, relatively few efforts have been made to debias PLMs by prompt tuning with continuous prompts compared to its discrete counterpart.
1 code implementation • 7 Nov 2022 • Chi Han, Hengzhi Pei, Xinya Du, Heng Ji
To this end, we propose the framework CLORE (Classification by LOgical Reasoning on Explanations).
no code implementations • 3 Nov 2022 • Guang Yang, Manling Li, Jiajie Zhang, Xudong Lin, Shih-Fu Chang, Heng Ji
Video event extraction aims to detect salient events from a video and identify the arguments for each event as well as their semantic roles.
1 code implementation • 3 Nov 2022 • Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji, Jiawei Han
Specifically, we formulate the role prediction problem as an in-filling task and construct prompts for a pre-trained language model to generate candidate roles.
1 code implementation • 31 Oct 2022 • Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, Heng Ji
We observe a consistent change in calibration performance across six factors.
1 code implementation • 25 Oct 2022 • Jianhao Shen, Chenguang Wang, Ye Yuan, Jiawei Han, Heng Ji, Koushik Sen, Ming Zhang, Dawn Song
For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters.
Ranked #5 on
Link Prediction
on UMLS
1 code implementation • 23 Oct 2022 • Xingyao Wang, Sha Li, Heng Ji
As a case study, we formulate Event Argument Extraction (EAE) as converting text into event-argument structures that can be represented as a class object using code.
1 code implementation • 23 Oct 2022 • Liliang Ren, Zixuan Zhang, Han Wang, Clare R. Voss, ChengXiang Zhai, Heng Ji
Modern large-scale Pre-trained Language Models (PLMs) have achieved tremendous success on a wide range of downstream tasks.
Ranked #3 on
Few-shot NER
on Few-NERD (INTRA)
(using extra training data)
1 code implementation • 22 Oct 2022 • Long Chen, Yulei Niu, Brian Chen, Xudong Lin, Guangxing Han, Christopher Thomas, Hammad Ayyubi, Heng Ji, Shih-Fu Chang
Specifically, given an article and a relevant video, WSAG aims to localize all ``groundable'' sentences to the video, and these sentences are possibly at different semantic scales.
1 code implementation • 21 Oct 2022 • Ziqi Wang, Yuexin Wu, Frederick Liu, Daogao Liu, Le Hou, Hongkun Yu, Jing Li, Heng Ji
However, these data augmentation methods either potentially cause shifts in decision boundaries (representation interpolation), are not expressive enough (token replacement), or introduce too much computational overhead (augmentation with models).
no code implementations • 16 Oct 2022 • Yi R. Fung, Tuhin Chakraborty, Hao Guo, Owen Rambow, Smaranda Muresan, Heng Ji
Norm discovery is important for understanding and reasoning about the acceptable behaviors and potential violations in human communication and interactions.
Cultural Vocal Bursts Intensity Prediction
Language Modelling
1 code implementation • 13 Oct 2022 • Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, PengFei Liu, Chenguang Zhu, Heng Ji, Jiawei Han
We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions.
no code implementations • 9 Oct 2022 • Feng Wang, Manling Li, Xudong Lin, Hairong Lv, Alexander G. Schwing, Heng Ji
Recent advances in pre-training vision-language models like CLIP have shown great potential in learning transferable visual representations.
1 code implementation • 1 Oct 2022 • Zhenhailong Wang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen, Heng Ji
Notably, our proposed $\text{Zemi}_\text{LARGE}$ outperforms T0-3B by 16% on all seven evaluation tasks while being 3. 9x smaller in model size.
1 code implementation • ACL 2022 • Xinya Du, Sha Li, Heng Ji
Extracting informative arguments of events from news articles is a challenging problem in information extraction, which requires a global contextual understanding of each document.
1 code implementation • COLING 2022 • Kung-Hsiang Huang, ChengXiang Zhai, Heng Ji
Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage.
Ranked #1 on
Zero-shot Cross-lingual Fact-checking
on X-Fact
Cross-lingual Fact-checking
Cross-Lingual Information Retrieval
+4
1 code implementation • 31 Aug 2022 • Chenkai Sun, Tie XU, ChengXiang Zhai, Heng Ji
In this paper, we present Tetris, a new task of Goal-Oriented Script Completion.
2 code implementations • 25 Aug 2022 • Qingyun Wang, Manling Li, Hou Pong Chan, Lifu Huang, Julia Hockenmaier, Girish Chowdhary, Heng Ji
Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 2, 338 tasks and 31, 496 steps with descriptive images.
Contrastive Learning
Multimedia Generative Script Learning
+2
no code implementations • 15 Jun 2022 • Sha Li, Mahdi Namazifar, Di Jin, Mohit Bansal, Heng Ji, Yang Liu, Dilek Hakkani-Tur
Providing conversation models with background knowledge has been shown to make open-domain dialogues more informative and engaging.
no code implementations • 6 Jun 2022 • Hongwei Wang, Zixuan Zhang, Sha Li, Jiawei Han, Yizhou Sun, Hanghang Tong, Joseph P. Olive, Heng Ji
Existing link prediction or graph completion methods have difficulty dealing with event graphs because they are usually designed for a single large graph such as a social network or a knowledge graph, rather than multiple small dynamic event graphs.
no code implementations • CVPR 2023 • Xudong Lin, Simran Tiwari, Shiyuan Huang, Manling Li, Mike Zheng Shou, Heng Ji, Shih-Fu Chang
We surprisingly find that discrete text tokens coupled with a pretrained contrastive text model yields the best performance, which can even outperform state-of-the-art on the iVQA and How2QA datasets without additional training on millions of video-text data.
Ranked #1 on
Video Question Answering
on How2QA
1 code implementation • 30 May 2022 • Qi Zeng, Qiusi Zhan, Heng Ji
Events are inter-related in documents.
no code implementations • 23 May 2022 • Anish Saha, Amith Ananthram, Emily Allaway, Heng Ji, Kathleen McKeown
Practitioners from many disciplines (e. g., political science) use expert-crafted taxonomies to make sense of large, unlabeled corpora.
no code implementations • 23 May 2022 • Yubin Ge, Ziang Xiao, Jana Diesner, Heng Ji, Karrie Karahalios, Hari Sundaram
Conversational surveys, where an agent asks open-ended questions through natural language interfaces, offer a new way to collect information from people.
1 code implementation • 22 May 2022 • Zhenhailong Wang, Manling Li, Ruochen Xu, Luowei Zhou, Jie Lei, Xudong Lin, Shuohang Wang, ZiYi Yang, Chenguang Zhu, Derek Hoiem, Shih-Fu Chang, Mohit Bansal, Heng Ji
The goal of this work is to build flexible video-language models that can generalize to various video-to-text tasks from few examples, such as domain-specific captioning, question answering, and future event prediction.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
1 code implementation • 25 Apr 2022 • Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, Heng Ji
We present $\textbf{MolT5}$ $-$ a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings.
Ranked #1 on
Molecule Captioning
on ChEBI-20
1 code implementation • 24 Apr 2022 • Revanth Gangi Reddy, Md Arafat Sultan, Martin Franz, Avirup Sil, Heng Ji
On two public IR benchmarks, we empirically show that the proposed method helps improve both the model's attention patterns and retrieval performance, including in zero-shot settings.
1 code implementation • 10 Mar 2022 • Kung-Hsiang Huang, Kathleen McKeown, Preslav Nakov, Yejin Choi, Heng Ji
Despite recent advances in detecting fake news generated by neural models, their results are not readily applicable to effective detection of human-written disinformation.
1 code implementation • 9 Mar 2022 • Yi R. Fung, Heng Ji
Online social networks such as Twitter and Weibo play an important role in how people stay informed and exchange reactions.
1 code implementation • MMMPIE (COLING) 2022 • Zhenhailong Wang, Hang Yu, Manling Li, Han Zhao, Heng Ji
While much literature has been devoted to exploring alternative optimization strategies, we identify another essential aspect towards effective few-shot transfer learning, task sampling, which is previously only be viewed as part of data pre-processing in MAML.
1 code implementation • Findings (ACL) 2022 • Tuan Manh Lai, Heng Ji, ChengXiang Zhai
We use the profile to query the indexed search engine to retrieve candidate entities.
no code implementations • 15 Feb 2022 • Sha Li, Liyuan Liu, Yiqing Xie, Heng Ji, Jiawei Han
Our framework decomposes event detection into an identification task and a localization task.
no code implementations • 12 Feb 2022 • Carl Edwards, Heng Ji
In contrast, we present a novel approach to semi-supervised new event type induction using a masked contrastive loss, which learns similarities between event mentions by enforcing an attention mechanism over the data minibatch.
1 code implementation • CVPR 2022 • Manling Li, Ruochen Xu, Shuohang Wang, Luowei Zhou, Xudong Lin, Chenguang Zhu, Michael Zeng, Heng Ji, Shih-Fu Chang
Vision-language (V+L) pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text.
2 code implementations • 20 Dec 2021 • Revanth Gangi Reddy, Xilin Rui, Manling Li, Xudong Lin, Haoyang Wen, Jaemin Cho, Lifu Huang, Mohit Bansal, Avirup Sil, Shih-Fu Chang, Alexander Schwing, Heng Ji
Specifically, the task involves multi-hop questions that require reasoning over image-caption pairs to identify the grounded visual object being referred to and then predicting a span from the news body text to answer the question.
2 code implementations • 16 Dec 2021 • Revanth Gangi Reddy, Sai Chetan, Zhenhailong Wang, Yi R. Fung, Kathryn Conger, Ahmed Elsayed, Martha Palmer, Preslav Nakov, Eduard Hovy, Kevin Small, Heng Ji
In this work, we present NewsClaims, a new benchmark for attribute-aware claim detection in the news domain.
1 code implementation • NAACL 2022 • Yifan Chen, Qi Zeng, Dilek Hakkani-Tur, Di Jin, Heng Ji, Yun Yang
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
1 code implementation • 5 Dec 2021 • Zhenhailong Wang, Heng Ji
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
1 code implementation • NeurIPS 2021 • Yifan Chen, Qi Zeng, Heng Ji, Yun Yang
Transformers are expensive to train due to the quadratic time and space complexity in the self-attention mechanism.
no code implementations • ICLR 2022 • Ruicheng Xian, Heng Ji, Han Zhao
Recent advances in neural modeling have produced deep multilingual language models capable of extracting cross-lingual knowledge from unparallel texts, as evidenced by their decent zero-shot transfer performance.
no code implementations • Findings (EMNLP) 2021 • Brian Chen, Xudong Lin, Christopher Thomas, Manling Li, Shoya Yoshida, Lovish Chum, Heng Ji, Shih-Fu Chang
We introduce the new task of Video MultiMedia Event Extraction (Video M2E2) and propose two novel components to build the first system towards this task.
1 code implementation • ICLR 2022 • Hongwei Wang, Weijiang Li, Xiaomeng Jin, Kyunghyun Cho, Heng Ji, Jiawei Han, Martin D. Burke
Molecule representation learning (MRL) methods aim to embed molecules into a real vector space.
1 code implementation • EMNLP 2021 • Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang, Yu Zhang, Heng Ji, Jiawei Han
We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base.
1 code implementation • EMNLP 2021 • Jiaming Shen, Yunyi Zhang, Heng Ji, Jiawei Han
As events of the same type could be expressed in multiple ways, we propose to represent each event type as a cluster of <predicate sense, object head> pairs.
1 code implementation • Findings (EMNLP) 2021 • Tuan Lai, Heng Ji, ChengXiang Zhai
Biomedical entity linking is the task of linking entity mentions in a biomedical document to referent entities in a knowledge base.
no code implementations • 3 Sep 2021 • Daniel Campos, Heng Ji
A large portion of chemistry literature focuses on new molecules and reactions between molecules.
no code implementations • 29 Aug 2021 • Chenkai Sun, Weijiang Li, Jinfeng Xiao, Nikolaus Nova Parulian, ChengXiang Zhai, Heng Ji
Automated knowledge discovery from trending chemical literature is essential for more efficient biomedical research.
no code implementations • 23 Aug 2021 • Tuan Manh Lai, Yang Zhang, Evelina Bakhturina, Boris Ginsburg, Heng Ji
In addition, we also create a cleaned dataset from the Spoken Wikipedia Corpora for German and report the performance of our systems on the dataset.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
no code implementations • ACL 2021 • Zixuan Zhang, Nikolaus Parulian, Heng Ji, Ahmed Elsayed, Skatje Myers, Martha Palmer
In this paper, we propose a novel biomedical Information Extraction (IE) model to tackle these two challenges and extract scientific entities and events from English research papers.
no code implementations • ACL 2021 • Samuel Kriman, Heng Ji
The tasks performed by this system are entity and event identification, typing, and coreference resolution.
no code implementations • ACL 2021 • Muhao Chen, Hongming Zhang, Qiang Ning, Manling Li, Heng Ji, Kathleen McKeown, Dan Roth
This tutorial targets researchers and practitioners who are interested in AI technologies that help machines understand natural language text, particularly real-world events described in the text.
no code implementations • ACL 2021 • Yi Fung, Christopher Thomas, Revanth Gangi Reddy, Sandeep Polisetty, Heng Ji, Shih-Fu Chang, Kathleen McKeown, Mohit Bansal, Avi Sil
To defend against machine-generated fake news, an effective mechanism is urgently needed.
1 code implementation • CVPR 2021 • Spencer Whitehead, Hui Wu, Heng Ji, Rogerio Feris, Kate Saenko
Generalization to out-of-distribution data has been a problem for Visual Question Answering (VQA) models.
1 code implementation • Findings (ACL) 2021 • Liliang Ren, Chenkai Sun, Heng Ji, Julia Hockenmaier
Text-to-Graph extraction aims to automatically extract information graphs consisting of mentions and types from natural language texts.
Ranked #1 on
Relation Extraction
on ACE 2005
(Sentence Encoder metric)
no code implementations • NAACL 2021 • Lingfei Wu, Yu Chen, Heng Ji, Yunyao Li
Due to its great power in modeling non-Euclidean data like graphs or manifolds, deep learning on graph techniques (i. e., Graph Neural Networks (GNNs)) have opened a new door to solving challenging graph-related NLP problems.
1 code implementation • NAACL 2021 • Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu Wang, Hongming Zhang, Xiaodong Yu, Alexander Dong, Zhenhailong Wang, Yi Fung, Piyush Mishra, Qing Lyu, D{\'\i}dac Sur{\'\i}s, Brian Chen, Susan Windisch Brown, Martha Palmer, Chris Callison-Burch, Carl Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang, Heng Ji
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video).
1 code implementation • NAACL 2021 • Haoyang Wen, Yanru Qu, Heng Ji, Qiang Ning, Jiawei Han, Avi Sil, Hanghang Tong, Dan Roth
Grounding events into a precise timeline is important for natural language understanding but has received limited attention in recent work.
1 code implementation • NAACL 2021 • Zixuan Zhang, Heng Ji
The tasks of Rich Semantic Parsing, such as Abstract Meaning Representation (AMR), share similar goals with Information Extraction (IE) to convert natural language texts into structured semantic representations.
1 code implementation • ACL 2021 • Tuan Lai, Heng Ji, ChengXiang Zhai, Quan Hung Tran
It then uses an entity linker to form a knowledge graph containing relevant background knowledge for the the entity mentions in the text.
1 code implementation • NeurIPS 2021 • Yifan Chen, Qi Zeng, Heng Ji, Yun Yang
Transformers are expensive to train due to the quadratic time and space complexity in the self-attention mechanism.
1 code implementation • ACL 2021 • Qingyun Wang, Semih Yavuz, Victoria Lin, Heng Ji, Nazneen Rajani
Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders.
Ranked #3 on
Data-to-Text Generation
on WebNLG
(using extra training data)
no code implementations • ACL 2021 • Haoyang Wen, Anthony Ferritto, Heng Ji, Radu Florian, Avirup Sil
Existing models on Machine Reading Comprehension (MRC) require complex model architecture for effectively modeling long texts with paragraph representation and classification, thereby making inference computationally inefficient for production use.
2 code implementations • Findings (ACL) 2021 • Chi Han, Mingxuan Wang, Heng Ji, Lei LI
By projecting audio and text features to a common semantic representation, Chimera unifies MT and ST tasks and boosts the performance on ST benchmarks, MuST-C and Augmented Librispeech, to a new state-of-the-art.
no code implementations • 15 Apr 2021 • Revanth Gangi Reddy, Vikas Yadav, Md Arafat Sultan, Martin Franz, Vittorio Castelli, Heng Ji, Avirup Sil
Recent work has shown that commonly available machine reading comprehension (MRC) datasets can be used to train high-performance neural information retrieval (IR) systems.
1 code implementation • EMNLP 2021 • Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang, Kyunghyun Cho, Heng Ji, Jiawei Han, Clare Voss
We introduce a new concept of Temporal Complex Event Schema: a graph-based schema representation that encompasses events, arguments, temporal connections and argument relations.
1 code implementation • NAACL 2021 • Sha Li, Heng Ji, Jiawei Han
On the task of argument extraction, we achieve an absolute gain of 7. 6% F1 and 5. 7% F1 over the next best model on the RAMS and WikiEvents datasets respectively.
Document-level Event Extraction
Event Argument Extraction
+1
no code implementations • 6 Apr 2021 • Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang Liu, Premkumar Natarajan
For example, with "add milk to my cart", a customer may refer to a certain organic product, while some customers may want to re-order products they regularly purchase.
1 code implementation • NAACL 2021 • Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, Lu Wang
The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization.
1 code implementation • NAACL 2021 • Tuan Lai, Heng Ji, Trung Bui, Quan Hung Tran, Franck Dernoncourt, Walter Chang
Event coreference resolution is an important research problem with many applications.
no code implementations • 23 Feb 2021 • Huajie Shao, Jun Wang, Haohong Lin, Xuezhou Zhang, Aston Zhang, Heng Ji, Tarek Abdelzaher
The algorithm is injected into a Conditional Variational Autoencoder (CVAE), allowing \textit{Apex} to control both (i) the order of keywords in the generated sentences (conditioned on the input keywords and their order), and (ii) the trade-off between diversity and accuracy.
no code implementations • 25 Jan 2021 • Thamar Solorio, Mahsa Shafaei, Christos Smailis, Mona Diab, Theodore Giannakopoulos, Heng Ji, Yang Liu, Rada Mihalcea, Smaranda Muresan, Ioannis Kakadiaris
This white paper presents a summary of the discussions regarding critical considerations to develop an extensive repository of online videos annotated with labels indicating questionable content.
1 code implementation • ACL 2021 • Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu, Peng Li, Heng Ji, Minlie Huang, Maosong Sun, Jie zhou
Pre-trained Language Models (PLMs) have shown superior performance on various downstream Natural Language Processing (NLP) tasks.
1 code implementation • 26 Nov 2020 • Spencer Whitehead, Hui Wu, Yi Ren Fung, Heng Ji, Rogerio Feris, Kate Saenko
Existing Visual Question Answering (VQA) models are often fragile and sensitive to input variations.
1 code implementation • 9 Nov 2020 • Xiaodan Hu, Pengfei Yu, Kevin Knight, Heng Ji, Bo Li, Honghui Shi
Experiments show that our approach can accurately illustrate 78% textual attributes, which also help MUSE capture the subject in a more creative and expressive way.
no code implementations • 6 Nov 2020 • Lihui Liu, Boxin Du, Heng Ji, Hanghang Tong
In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs.
2 code implementations • 24 Oct 2020 • Yuning Mao, Xiang Ren, Heng Ji, Jiawei Han
Despite significant progress, state-of-the-art abstractive summarization methods are still prone to hallucinate content inconsistent with the source document.
no code implementations • CONLL 2018 • Boliang Zhang, Spencer Whitehead, Lifu Huang, Heng Ji
Many name tagging approaches use local contextual information with much success, but fail when the local context is ambiguous or limited.
2 code implementations • EMNLP 2020 • Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong, Heng Ji, Chao Zhang, Jiawei Han
In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents.
1 code implementation • INLG (ACL) 2020 • Qingyun Wang, Qi Zeng, Lifu Huang, Kevin Knight, Heng Ji, Nazneen Fatema Rajani
To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison.
1 code implementation • EMNLP 2020 • Jiaxin Huang, Yu Meng, Fang Guo, Heng Ji, Jiawei Han
Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner.
Aspect-Based Sentiment Analysis (ABSA)
Sentiment Classification
+1
3 code implementations • 9 Oct 2020 • Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, Meng Jiang
To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models.
1 code implementation • EMNLP 2020 • Jiaming Shen, Heng Ji, Jiawei Han
Linguistic steganography studies how to hide secret messages in natural language cover texts.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Ranran Haoran Zhang, Qianying Liu, Aysa Xuemo Fan, Heng Ji, Daojian Zeng, Fei Cheng, Daisuke Kawahara, Sadao Kurohashi
We propose a novel Sequence-to-Unordered-Multi-Tree (Seq2UMTree) model to minimize the effects of exposure bias by limiting the decoding length to three within a triplet and removing the order among triplets.
no code implementations • ACL 2020 • Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan, Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji, Shih-Fu Chang, Clare Voss, Daniel Napierski, Marjorie Freedman
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology.
no code implementations • ACL 2020 • Ying Lin, Heng Ji, Fei Huang, Lingfei Wu
OneIE performs end-to-end IE in four stages: (1) Encoding a given sentence as contextualized word representations; (2) Identifying entity mentions and event triggers as nodes; (3) Computing label scores for all nodes and their pairwise links using local classifiers; (4) Searching for the globally optimal graph with a beam decoder.
no code implementations • NAACL 2021 • Qingyun Wang, Manling Li, Xuan Wang, Nikolaus Parulian, Guangxing Han, Jiawei Ma, Jingxuan Tu, Ying Lin, Haoran Zhang, Weili Liu, Aabhas Chauhan, Yingjun Guan, Bangzheng Li, Ruisong Li, Xiangchen Song, Yi R. Fung, Heng Ji, Jiawei Han, Shih-Fu Chang, James Pustejovsky, Jasmine Rah, David Liem, Ahmed Elsayed, Martha Palmer, Clare Voss, Cynthia Schneider, Boyan Onyshkevych
To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions.
no code implementations • ACL 2020 • Manling Li, Alireza Zareian, Qi Zeng, Spencer Whitehead, Di Lu, Heng Ji, Shih-Fu Chang
We introduce a new task, MultiMedia Event Extraction (M2E2), which aims to extract events and their arguments from multimedia documents.
no code implementations • LREC 2020 • Di Lu, Ananya Subburathinam, Heng Ji, Jonathan May, Shih-Fu Chang, Avi Sil, Clare Voss
Most of the current cross-lingual transfer learning methods for Information Extraction (IE) have been only applied to name tagging.
no code implementations • 11 Feb 2020 • Tongtao Zhang, Heng Ji, Shih-Fu Chang, Marjorie Freedman
In this paper, we address a practical scenario where training data is released in a sequence of small-scale batches and annotation in earlier phases has lower quality than the later counterparts.
1 code implementation • ECCV 2020 • Dídac Surís, Dave Epstein, Heng Ji, Shih-Fu Chang, Carl Vondrick
Language acquisition is the process of learning words from the surrounding scene.
no code implementations • WS 2019 • Diya Li, Heng Ji
In this paper we tackle two unique challenges in biomedical relation extraction.
no code implementations • WS 2019 • Xiaoman Pan, Thamme Gowda, Heng Ji, Jonathan May, Scott Miller
Because this multilingual common space directly relates the semantics of contextual words in the source language to that of entities in the target language, we leverage it for unsupervised cross-lingual entity linking.
no code implementations • WS 2019 • Kevin Blissett, Heng Ji
In this paper we address a challenging cross-lingual name retrieval task.
no code implementations • IJCNLP 2019 • Ying Lin, Heng Ji
In addition, we propose a two-step mention-aware attention mechanism to enable the model to focus on important words in mentions and contexts.
no code implementations • IJCNLP 2019 • Ananya Subburathinam, Di Lu, Heng Ji, Jonathan May, Shih-Fu Chang, Avirup Sil, Clare Voss
The identification of complex semantic structures such as events and entity relations, already a challenging Information Extraction task, is doubly difficult from sources written in under-resourced and under-annotated languages.
1 code implementation • IJCNLP 2019 • Yixin Cao, Zikun Hu, Tat-Seng Chua, Zhiyuan Liu, Heng Ji
Name tagging in low-resource languages or domains suffers from inadequate training data.
1 code implementation • 14 Aug 2019 • Liyuan Liu, Zihan Wang, Jingbo Shang, Dandong Yin, Heng Ji, Xiang Ren, Shaowen Wang, Jiawei Han
Our model neither requires the conversion from character sequences to word sequences, nor assumes tokenizer can correctly detect all word boundaries.
1 code implementation • ACL 2019 • Ying Lin, Liyuan Liu, Heng Ji, Dong Yu, Jiawei Han
We design a set of word frequency-based reliability signals to indicate the quality of each word embedding.
no code implementations • ACL 2019 • Manling Li, Lingyu Zhang, Heng Ji, Richard J. Radke
Transcripts of natural, multi-person meetings differ significantly from documents like news articles, which can make Natural Language Generation models for generating summaries unfocused.
no code implementations • NAACL 2019 • Manling Li, Ying Lin, Joseph Hoover, Spencer Whitehead, Clare Voss, Morteza Dehghani, Heng Ji
This paper demonstrates a state-of-the-art end-to-end multilingual (English, Russian, and Ukrainian) knowledge extraction system that can perform entity discovery and linking, relation extraction, event extraction, and coreference.
no code implementations • NAACL 2019 • Lifu Huang, Heng Ji, Jonathan May
We focus on improving name tagging for low-resource languages using annotations from related languages.