no code implementations • 1 Mar 2022 • Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, Yaguang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng, Ed H. Chi
Prompt-Tuning is a new paradigm for finetuning pre-trained language models in a parameter-efficient way.
2 code implementations • 20 Jan 2022 • Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, Yaguang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, Quoc Le
We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding.
Ranked #26 on
Code Generation
on HumanEval
no code implementations • 20 May 2021 • Sukhdeep S. Sodhi, Ellie Ka-In Chio, Ambarish Jash, Santiago Ontañón, Ajit Apte, Ankit Kumar, Ayooluwakunmi Jeje, Dima Kuzmin, Harry Fung, Heng-Tze Cheng, Jon Effrat, Tarush Bali, Nitin Jindal, Pei Cao, Sarvjeet Singh, Senqiang Zhou, Tameen Khan, Amol Wankhede, Moustafa Alzantot, Allen Wu, Tushar Chandra
As more and more online search queries come from voice, automatic speech recognition becomes a key component to deliver relevant search results.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 7 Aug 2020 • Tao Wu, Ellie Ka-In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin, Ritesh Agarwal, Li Zhang, John Anderson, Sarvjeet Singh, Tushar Chandra, Ed H. Chi, Wen Li, Ankit Kumar, Xiang Ma, Alex Soares, Nitin Jindal, Pei Cao
In light of these problems, we observed that most online content platforms have both a search and a recommender system that, while having heterogeneous input spaces, can be connected through their common output item space and a shared semantic representation.
no code implementations • 12 Feb 2020 • Ge Liu, Rui Wu, Heng-Tze Cheng, Jing Wang, Jayden Ooi, Lihong Li, Ang Li, Wai Lok Sibon Li, Craig Boutilier, Ed Chi
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments.
no code implementations • 3 Jan 2020 • Kishaloy Halder, Heng-Tze Cheng, Ellie Ka In Chio, Georgios Roumpos, Tao Wu, Ritesh Agarwal
Users issue queries to Search Engines, and try to find the desired information in the results produced.
3 code implementations • 29 May 2019 • Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Covington, Jim McFadden, Tushar Chandra, Craig Boutilier
(i) We develop SLATEQ, a decomposition of value-based temporal-difference and Q-learning that renders RL tractable with slates.
1 code implementation • 8 Aug 2017 • Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Georgios Roumpos, D. Sculley, Jamie Smith, David Soergel, Yuan Tang, Philipp Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie
Our focus is on simplifying cutting edge machine learning for practitioners in order to bring such technologies into production.
35 code implementations • 24 Jun 2016 • Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah
Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort.
Ranked #2 on
Click-Through Rate Prediction
on Bing News